This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmdv.z | |- Z = ( ZZ>= ` M ) |
|
| ulmdv.s | |- ( ph -> S e. { RR , CC } ) |
||
| ulmdv.m | |- ( ph -> M e. ZZ ) |
||
| ulmdv.f | |- ( ph -> F : Z --> ( CC ^m X ) ) |
||
| ulmdv.g | |- ( ph -> G : X --> CC ) |
||
| ulmdv.l | |- ( ( ph /\ z e. X ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
||
| ulmdv.u | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) |
||
| Assertion | ulmdvlem2 | |- ( ( ph /\ k e. Z ) -> dom ( S _D ( F ` k ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmdv.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmdv.s | |- ( ph -> S e. { RR , CC } ) |
|
| 3 | ulmdv.m | |- ( ph -> M e. ZZ ) |
|
| 4 | ulmdv.f | |- ( ph -> F : Z --> ( CC ^m X ) ) |
|
| 5 | ulmdv.g | |- ( ph -> G : X --> CC ) |
|
| 6 | ulmdv.l | |- ( ( ph /\ z e. X ) -> ( k e. Z |-> ( ( F ` k ) ` z ) ) ~~> ( G ` z ) ) |
|
| 7 | ulmdv.u | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) |
|
| 8 | ovex | |- ( S _D ( F ` k ) ) e. _V |
|
| 9 | 8 | rgenw | |- A. k e. Z ( S _D ( F ` k ) ) e. _V |
| 10 | eqid | |- ( k e. Z |-> ( S _D ( F ` k ) ) ) = ( k e. Z |-> ( S _D ( F ` k ) ) ) |
|
| 11 | 10 | fnmpt | |- ( A. k e. Z ( S _D ( F ` k ) ) e. _V -> ( k e. Z |-> ( S _D ( F ` k ) ) ) Fn Z ) |
| 12 | 9 11 | mp1i | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) Fn Z ) |
| 13 | ulmf2 | |- ( ( ( k e. Z |-> ( S _D ( F ` k ) ) ) Fn Z /\ ( k e. Z |-> ( S _D ( F ` k ) ) ) ( ~~>u ` X ) H ) -> ( k e. Z |-> ( S _D ( F ` k ) ) ) : Z --> ( CC ^m X ) ) |
|
| 14 | 12 7 13 | syl2anc | |- ( ph -> ( k e. Z |-> ( S _D ( F ` k ) ) ) : Z --> ( CC ^m X ) ) |
| 15 | 14 | fvmptelcdm | |- ( ( ph /\ k e. Z ) -> ( S _D ( F ` k ) ) e. ( CC ^m X ) ) |
| 16 | elmapi | |- ( ( S _D ( F ` k ) ) e. ( CC ^m X ) -> ( S _D ( F ` k ) ) : X --> CC ) |
|
| 17 | fdm | |- ( ( S _D ( F ` k ) ) : X --> CC -> dom ( S _D ( F ` k ) ) = X ) |
|
| 18 | 15 16 17 | 3syl | |- ( ( ph /\ k e. Z ) -> dom ( S _D ( F ` k ) ) = X ) |