This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter base does not contain complements of its elements. (Contributed by Mario Carneiro, 26-Nov-2013) (Revised by Stefan O'Rear, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbncp | |- ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. ( B \ A ) e. F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelfb | |- ( F e. ( fBas ` X ) -> -. (/) e. F ) |
|
| 2 | 1 | adantr | |- ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. (/) e. F ) |
| 3 | fbasssin | |- ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> E. x e. F x C_ ( A i^i ( B \ A ) ) ) |
|
| 4 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
| 5 | 4 | sseq2i | |- ( x C_ ( A i^i ( B \ A ) ) <-> x C_ (/) ) |
| 6 | ss0 | |- ( x C_ (/) -> x = (/) ) |
|
| 7 | 5 6 | sylbi | |- ( x C_ ( A i^i ( B \ A ) ) -> x = (/) ) |
| 8 | eleq1 | |- ( x = (/) -> ( x e. F <-> (/) e. F ) ) |
|
| 9 | 8 | biimpac | |- ( ( x e. F /\ x = (/) ) -> (/) e. F ) |
| 10 | 7 9 | sylan2 | |- ( ( x e. F /\ x C_ ( A i^i ( B \ A ) ) ) -> (/) e. F ) |
| 11 | 10 | rexlimiva | |- ( E. x e. F x C_ ( A i^i ( B \ A ) ) -> (/) e. F ) |
| 12 | 3 11 | syl | |- ( ( F e. ( fBas ` X ) /\ A e. F /\ ( B \ A ) e. F ) -> (/) e. F ) |
| 13 | 12 | 3expia | |- ( ( F e. ( fBas ` X ) /\ A e. F ) -> ( ( B \ A ) e. F -> (/) e. F ) ) |
| 14 | 2 13 | mtod | |- ( ( F e. ( fBas ` X ) /\ A e. F ) -> -. ( B \ A ) e. F ) |