This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at a limit ordinal. Part 3 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
||
| tz7.44.3 | |- ( y e. X -> ( F |` y ) e. _V ) |
||
| tz7.44.4 | |- F Fn X |
||
| tz7.44.5 | |- Ord X |
||
| Assertion | tz7.44-3 | |- ( ( B e. X /\ Lim B ) -> ( F ` B ) = U. ( F " B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| 2 | tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
|
| 3 | tz7.44.3 | |- ( y e. X -> ( F |` y ) e. _V ) |
|
| 4 | tz7.44.4 | |- F Fn X |
|
| 5 | tz7.44.5 | |- Ord X |
|
| 6 | fveq2 | |- ( y = B -> ( F ` y ) = ( F ` B ) ) |
|
| 7 | reseq2 | |- ( y = B -> ( F |` y ) = ( F |` B ) ) |
|
| 8 | 7 | fveq2d | |- ( y = B -> ( G ` ( F |` y ) ) = ( G ` ( F |` B ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( y = B -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` B ) = ( G ` ( F |` B ) ) ) ) |
| 10 | 9 2 | vtoclga | |- ( B e. X -> ( F ` B ) = ( G ` ( F |` B ) ) ) |
| 11 | 10 | adantr | |- ( ( B e. X /\ Lim B ) -> ( F ` B ) = ( G ` ( F |` B ) ) ) |
| 12 | 7 | eleq1d | |- ( y = B -> ( ( F |` y ) e. _V <-> ( F |` B ) e. _V ) ) |
| 13 | 12 3 | vtoclga | |- ( B e. X -> ( F |` B ) e. _V ) |
| 14 | 13 | adantr | |- ( ( B e. X /\ Lim B ) -> ( F |` B ) e. _V ) |
| 15 | simpr | |- ( ( B e. X /\ Lim B ) -> Lim B ) |
|
| 16 | nlim0 | |- -. Lim (/) |
|
| 17 | dmres | |- dom ( F |` B ) = ( B i^i dom F ) |
|
| 18 | ordelss | |- ( ( Ord X /\ B e. X ) -> B C_ X ) |
|
| 19 | 5 18 | mpan | |- ( B e. X -> B C_ X ) |
| 20 | 19 | adantr | |- ( ( B e. X /\ Lim B ) -> B C_ X ) |
| 21 | fndm | |- ( F Fn X -> dom F = X ) |
|
| 22 | 4 21 | ax-mp | |- dom F = X |
| 23 | 20 22 | sseqtrrdi | |- ( ( B e. X /\ Lim B ) -> B C_ dom F ) |
| 24 | dfss2 | |- ( B C_ dom F <-> ( B i^i dom F ) = B ) |
|
| 25 | 23 24 | sylib | |- ( ( B e. X /\ Lim B ) -> ( B i^i dom F ) = B ) |
| 26 | 17 25 | eqtrid | |- ( ( B e. X /\ Lim B ) -> dom ( F |` B ) = B ) |
| 27 | dmeq | |- ( ( F |` B ) = (/) -> dom ( F |` B ) = dom (/) ) |
|
| 28 | dm0 | |- dom (/) = (/) |
|
| 29 | 27 28 | eqtrdi | |- ( ( F |` B ) = (/) -> dom ( F |` B ) = (/) ) |
| 30 | 26 29 | sylan9req | |- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> B = (/) ) |
| 31 | limeq | |- ( B = (/) -> ( Lim B <-> Lim (/) ) ) |
|
| 32 | 30 31 | syl | |- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> ( Lim B <-> Lim (/) ) ) |
| 33 | 16 32 | mtbiri | |- ( ( ( B e. X /\ Lim B ) /\ ( F |` B ) = (/) ) -> -. Lim B ) |
| 34 | 33 | ex | |- ( ( B e. X /\ Lim B ) -> ( ( F |` B ) = (/) -> -. Lim B ) ) |
| 35 | 15 34 | mt2d | |- ( ( B e. X /\ Lim B ) -> -. ( F |` B ) = (/) ) |
| 36 | 35 | iffalsed | |- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) = if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) |
| 37 | limeq | |- ( dom ( F |` B ) = B -> ( Lim dom ( F |` B ) <-> Lim B ) ) |
|
| 38 | 26 37 | syl | |- ( ( B e. X /\ Lim B ) -> ( Lim dom ( F |` B ) <-> Lim B ) ) |
| 39 | 15 38 | mpbird | |- ( ( B e. X /\ Lim B ) -> Lim dom ( F |` B ) ) |
| 40 | 39 | iftrued | |- ( ( B e. X /\ Lim B ) -> if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) = U. ran ( F |` B ) ) |
| 41 | 36 40 | eqtrd | |- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) = U. ran ( F |` B ) ) |
| 42 | rnexg | |- ( ( F |` B ) e. _V -> ran ( F |` B ) e. _V ) |
|
| 43 | uniexg | |- ( ran ( F |` B ) e. _V -> U. ran ( F |` B ) e. _V ) |
|
| 44 | 14 42 43 | 3syl | |- ( ( B e. X /\ Lim B ) -> U. ran ( F |` B ) e. _V ) |
| 45 | 41 44 | eqeltrd | |- ( ( B e. X /\ Lim B ) -> if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) e. _V ) |
| 46 | eqeq1 | |- ( x = ( F |` B ) -> ( x = (/) <-> ( F |` B ) = (/) ) ) |
|
| 47 | dmeq | |- ( x = ( F |` B ) -> dom x = dom ( F |` B ) ) |
|
| 48 | limeq | |- ( dom x = dom ( F |` B ) -> ( Lim dom x <-> Lim dom ( F |` B ) ) ) |
|
| 49 | 47 48 | syl | |- ( x = ( F |` B ) -> ( Lim dom x <-> Lim dom ( F |` B ) ) ) |
| 50 | rneq | |- ( x = ( F |` B ) -> ran x = ran ( F |` B ) ) |
|
| 51 | 50 | unieqd | |- ( x = ( F |` B ) -> U. ran x = U. ran ( F |` B ) ) |
| 52 | fveq1 | |- ( x = ( F |` B ) -> ( x ` U. dom x ) = ( ( F |` B ) ` U. dom x ) ) |
|
| 53 | 47 | unieqd | |- ( x = ( F |` B ) -> U. dom x = U. dom ( F |` B ) ) |
| 54 | 53 | fveq2d | |- ( x = ( F |` B ) -> ( ( F |` B ) ` U. dom x ) = ( ( F |` B ) ` U. dom ( F |` B ) ) ) |
| 55 | 52 54 | eqtrd | |- ( x = ( F |` B ) -> ( x ` U. dom x ) = ( ( F |` B ) ` U. dom ( F |` B ) ) ) |
| 56 | 55 | fveq2d | |- ( x = ( F |` B ) -> ( H ` ( x ` U. dom x ) ) = ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) |
| 57 | 49 51 56 | ifbieq12d | |- ( x = ( F |` B ) -> if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) = if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) |
| 58 | 46 57 | ifbieq2d | |- ( x = ( F |` B ) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
| 59 | 58 1 | fvmptg | |- ( ( ( F |` B ) e. _V /\ if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) e. _V ) -> ( G ` ( F |` B ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
| 60 | 14 45 59 | syl2anc | |- ( ( B e. X /\ Lim B ) -> ( G ` ( F |` B ) ) = if ( ( F |` B ) = (/) , A , if ( Lim dom ( F |` B ) , U. ran ( F |` B ) , ( H ` ( ( F |` B ) ` U. dom ( F |` B ) ) ) ) ) ) |
| 61 | 60 41 | eqtrd | |- ( ( B e. X /\ Lim B ) -> ( G ` ( F |` B ) ) = U. ran ( F |` B ) ) |
| 62 | 11 61 | eqtrd | |- ( ( B e. X /\ Lim B ) -> ( F ` B ) = U. ran ( F |` B ) ) |
| 63 | df-ima | |- ( F " B ) = ran ( F |` B ) |
|
| 64 | 63 | unieqi | |- U. ( F " B ) = U. ran ( F |` B ) |
| 65 | 62 64 | eqtr4di | |- ( ( B e. X /\ Lim B ) -> ( F ` B ) = U. ( F " B ) ) |