This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" property of equality (split into 3 cases). (The first two hypotheses could be eliminated with longer proof.) (Contributed by NM, 23-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moeq3.1 | |- B e. _V |
|
| moeq3.2 | |- C e. _V |
||
| moeq3.3 | |- -. ( ph /\ ps ) |
||
| Assertion | moeq3 | |- E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq3.1 | |- B e. _V |
|
| 2 | moeq3.2 | |- C e. _V |
|
| 3 | moeq3.3 | |- -. ( ph /\ ps ) |
|
| 4 | eqeq2 | |- ( y = A -> ( x = y <-> x = A ) ) |
|
| 5 | 4 | anbi2d | |- ( y = A -> ( ( ph /\ x = y ) <-> ( ph /\ x = A ) ) ) |
| 6 | biidd | |- ( y = A -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
|
| 7 | biidd | |- ( y = A -> ( ( ps /\ x = C ) <-> ( ps /\ x = C ) ) ) |
|
| 8 | 5 6 7 | 3orbi123d | |- ( y = A -> ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 9 | 8 | eubidv | |- ( y = A -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 10 | vex | |- y e. _V |
|
| 11 | 10 1 2 3 | eueq3 | |- E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |
| 12 | 9 11 | vtoclg | |- ( A e. _V -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 13 | eumo | |- ( E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
|
| 14 | 12 13 | syl | |- ( A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 15 | eqvisset | |- ( x = A -> A e. _V ) |
|
| 16 | pm2.21 | |- ( -. A e. _V -> ( A e. _V -> x = y ) ) |
|
| 17 | 15 16 | syl5 | |- ( -. A e. _V -> ( x = A -> x = y ) ) |
| 18 | 17 | anim2d | |- ( -. A e. _V -> ( ( ph /\ x = A ) -> ( ph /\ x = y ) ) ) |
| 19 | 18 | orim1d | |- ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) ) |
| 20 | 3orass | |- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
|
| 21 | 3orass | |- ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
|
| 22 | 19 20 21 | 3imtr4g | |- ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 23 | 22 | alrimiv | |- ( -. A e. _V -> A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
| 24 | euimmo | |- ( A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
|
| 25 | 23 11 24 | mpisyl | |- ( -. A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
| 26 | 14 25 | pm2.61i | |- E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |