This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of F at (/) . Part 1 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
||
| tz7.44-1.3 | |- A e. _V |
||
| Assertion | tz7.44-1 | |- ( (/) e. X -> ( F ` (/) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44.1 | |- G = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) ) |
|
| 2 | tz7.44.2 | |- ( y e. X -> ( F ` y ) = ( G ` ( F |` y ) ) ) |
|
| 3 | tz7.44-1.3 | |- A e. _V |
|
| 4 | fveq2 | |- ( y = (/) -> ( F ` y ) = ( F ` (/) ) ) |
|
| 5 | reseq2 | |- ( y = (/) -> ( F |` y ) = ( F |` (/) ) ) |
|
| 6 | res0 | |- ( F |` (/) ) = (/) |
|
| 7 | 5 6 | eqtrdi | |- ( y = (/) -> ( F |` y ) = (/) ) |
| 8 | 7 | fveq2d | |- ( y = (/) -> ( G ` ( F |` y ) ) = ( G ` (/) ) ) |
| 9 | 4 8 | eqeq12d | |- ( y = (/) -> ( ( F ` y ) = ( G ` ( F |` y ) ) <-> ( F ` (/) ) = ( G ` (/) ) ) ) |
| 10 | 9 2 | vtoclga | |- ( (/) e. X -> ( F ` (/) ) = ( G ` (/) ) ) |
| 11 | 0ex | |- (/) e. _V |
|
| 12 | iftrue | |- ( x = (/) -> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( H ` ( x ` U. dom x ) ) ) ) = A ) |
|
| 13 | 12 1 3 | fvmpt | |- ( (/) e. _V -> ( G ` (/) ) = A ) |
| 14 | 11 13 | ax-mp | |- ( G ` (/) ) = A |
| 15 | 10 14 | eqtrdi | |- ( (/) e. X -> ( F ` (/) ) = A ) |