This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | setsid.e | |- E = Slot ( E ` ndx ) |
|
| Assertion | setsid | |- ( ( W e. A /\ C e. V ) -> C = ( E ` ( W sSet <. ( E ` ndx ) , C >. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsid.e | |- E = Slot ( E ` ndx ) |
|
| 2 | setsval | |- ( ( W e. A /\ C e. V ) -> ( W sSet <. ( E ` ndx ) , C >. ) = ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) |
|
| 3 | 2 | fveq2d | |- ( ( W e. A /\ C e. V ) -> ( E ` ( W sSet <. ( E ` ndx ) , C >. ) ) = ( E ` ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) ) |
| 4 | resexg | |- ( W e. A -> ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V ) |
|
| 5 | 4 | adantr | |- ( ( W e. A /\ C e. V ) -> ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V ) |
| 6 | snex | |- { <. ( E ` ndx ) , C >. } e. _V |
|
| 7 | unexg | |- ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) e. _V /\ { <. ( E ` ndx ) , C >. } e. _V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) e. _V ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( W e. A /\ C e. V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) e. _V ) |
| 9 | 1 8 | strfvnd | |- ( ( W e. A /\ C e. V ) -> ( E ` ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) ) |
| 10 | fvex | |- ( E ` ndx ) e. _V |
|
| 11 | 10 | snid | |- ( E ` ndx ) e. { ( E ` ndx ) } |
| 12 | fvres | |- ( ( E ` ndx ) e. { ( E ` ndx ) } -> ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) ) |
|
| 13 | 11 12 | ax-mp | |- ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) |
| 14 | resres | |- ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) |
|
| 15 | disjdifr | |- ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) = (/) |
|
| 16 | 15 | reseq2i | |- ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) = ( W |` (/) ) |
| 17 | res0 | |- ( W |` (/) ) = (/) |
|
| 18 | 16 17 | eqtri | |- ( W |` ( ( _V \ { ( E ` ndx ) } ) i^i { ( E ` ndx ) } ) ) = (/) |
| 19 | 14 18 | eqtri | |- ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = (/) |
| 20 | 19 | a1i | |- ( ( W e. A /\ C e. V ) -> ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) = (/) ) |
| 21 | elex | |- ( C e. V -> C e. _V ) |
|
| 22 | 21 | adantl | |- ( ( W e. A /\ C e. V ) -> C e. _V ) |
| 23 | opelxpi | |- ( ( ( E ` ndx ) e. _V /\ C e. _V ) -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
|
| 24 | 10 22 23 | sylancr | |- ( ( W e. A /\ C e. V ) -> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
| 25 | opex | |- <. ( E ` ndx ) , C >. e. _V |
|
| 26 | 25 | relsn | |- ( Rel { <. ( E ` ndx ) , C >. } <-> <. ( E ` ndx ) , C >. e. ( _V X. _V ) ) |
| 27 | 24 26 | sylibr | |- ( ( W e. A /\ C e. V ) -> Rel { <. ( E ` ndx ) , C >. } ) |
| 28 | dmsnopss | |- dom { <. ( E ` ndx ) , C >. } C_ { ( E ` ndx ) } |
|
| 29 | relssres | |- ( ( Rel { <. ( E ` ndx ) , C >. } /\ dom { <. ( E ` ndx ) , C >. } C_ { ( E ` ndx ) } ) -> ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
|
| 30 | 27 28 29 | sylancl | |- ( ( W e. A /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
| 31 | 20 30 | uneq12d | |- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) u. ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) ) = ( (/) u. { <. ( E ` ndx ) , C >. } ) ) |
| 32 | resundir | |- ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) = ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) |` { ( E ` ndx ) } ) u. ( { <. ( E ` ndx ) , C >. } |` { ( E ` ndx ) } ) ) |
|
| 33 | un0 | |- ( { <. ( E ` ndx ) , C >. } u. (/) ) = { <. ( E ` ndx ) , C >. } |
|
| 34 | uncom | |- ( { <. ( E ` ndx ) , C >. } u. (/) ) = ( (/) u. { <. ( E ` ndx ) , C >. } ) |
|
| 35 | 33 34 | eqtr3i | |- { <. ( E ` ndx ) , C >. } = ( (/) u. { <. ( E ` ndx ) , C >. } ) |
| 36 | 31 32 35 | 3eqtr4g | |- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) = { <. ( E ` ndx ) , C >. } ) |
| 37 | 36 | fveq1d | |- ( ( W e. A /\ C e. V ) -> ( ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) |` { ( E ` ndx ) } ) ` ( E ` ndx ) ) = ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) ) |
| 38 | 13 37 | eqtr3id | |- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) = ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) ) |
| 39 | 10 | a1i | |- ( ( W e. A /\ C e. V ) -> ( E ` ndx ) e. _V ) |
| 40 | fvsng | |- ( ( ( E ` ndx ) e. _V /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) = C ) |
|
| 41 | 39 40 | sylancom | |- ( ( W e. A /\ C e. V ) -> ( { <. ( E ` ndx ) , C >. } ` ( E ` ndx ) ) = C ) |
| 42 | 38 41 | eqtrd | |- ( ( W e. A /\ C e. V ) -> ( ( ( W |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , C >. } ) ` ( E ` ndx ) ) = C ) |
| 43 | 3 9 42 | 3eqtrrd | |- ( ( W e. A /\ C e. V ) -> C = ( E ` ( W sSet <. ( E ` ndx ) , C >. ) ) ) |