This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trirecip | ⊢ Σ 𝑘 ∈ ℕ ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | ⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) | |
| 2 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 3 | nnmulcl | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℕ ) | |
| 4 | 2 3 | mpdan | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 5 | 4 | nncnd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 6 | 4 | nnne0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 · ( 𝑘 + 1 ) ) ≠ 0 ) |
| 7 | 1 5 6 | divrecd | ⊢ ( 𝑘 ∈ ℕ → ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) ) |
| 8 | 7 | sumeq2i | ⊢ Σ 𝑘 ∈ ℕ ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
| 9 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 10 | 1zzd | ⊢ ( ⊤ → 1 ∈ ℤ ) | |
| 11 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 12 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 + 1 ) = ( 𝑘 + 1 ) ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 · ( 𝑛 + 1 ) ) = ( 𝑘 · ( 𝑘 + 1 ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
| 15 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) | |
| 16 | ovex | ⊢ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ V | |
| 17 | 14 15 16 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ‘ 𝑘 ) = ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) |
| 19 | 4 | nnrecred | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 20 | 19 | recnd | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 21 | 20 | adantl | ⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ ) → ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ∈ ℂ ) |
| 22 | 15 | trireciplem | ⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 |
| 23 | 22 | a1i | ⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 ) |
| 24 | climrel | ⊢ Rel ⇝ | |
| 25 | 24 | releldmi | ⊢ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ⇝ 1 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ dom ⇝ ) |
| 26 | 23 25 | syl | ⊢ ( ⊤ → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ dom ⇝ ) |
| 27 | 2cnd | ⊢ ( ⊤ → 2 ∈ ℂ ) | |
| 28 | 9 10 18 21 26 27 | isummulc2 | ⊢ ( ⊤ → ( 2 · Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) ) |
| 29 | 9 10 18 21 23 | isumclim | ⊢ ( ⊤ → Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = 1 ) |
| 30 | 29 | oveq2d | ⊢ ( ⊤ → ( 2 · Σ 𝑘 ∈ ℕ ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) ) |
| 31 | 28 30 | eqtr3d | ⊢ ( ⊤ → Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) ) |
| 32 | 31 | mptru | ⊢ Σ 𝑘 ∈ ℕ ( 2 · ( 1 / ( 𝑘 · ( 𝑘 + 1 ) ) ) ) = ( 2 · 1 ) |
| 33 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 34 | 8 32 33 | 3eqtri | ⊢ Σ 𝑘 ∈ ℕ ( 2 / ( 𝑘 · ( 𝑘 + 1 ) ) ) = 2 |