This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
| isumcl.2 | |- ( ph -> M e. ZZ ) |
||
| isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumcl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| summulc.6 | |- ( ph -> B e. CC ) |
||
| Assertion | isummulc2 | |- ( ph -> ( B x. sum_ k e. Z A ) = sum_ k e. Z ( B x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumcl.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumcl.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumcl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumcl.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isumcl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | summulc.6 | |- ( ph -> B e. CC ) |
|
| 7 | eqidd | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( ( k e. Z |-> ( B x. A ) ) ` m ) ) |
|
| 8 | 6 | adantr | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 9 | 8 4 | mulcld | |- ( ( ph /\ k e. Z ) -> ( B x. A ) e. CC ) |
| 10 | 9 | fmpttd | |- ( ph -> ( k e. Z |-> ( B x. A ) ) : Z --> CC ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) e. CC ) |
| 12 | 1 2 3 4 5 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
| 13 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 14 | 13 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 15 | fveq2 | |- ( k = m -> ( F ` k ) = ( F ` m ) ) |
|
| 16 | 15 | eleq1d | |- ( k = m -> ( ( F ` k ) e. CC <-> ( F ` m ) e. CC ) ) |
| 17 | 16 | rspccva | |- ( ( A. k e. Z ( F ` k ) e. CC /\ m e. Z ) -> ( F ` m ) e. CC ) |
| 18 | 14 17 | sylan | |- ( ( ph /\ m e. Z ) -> ( F ` m ) e. CC ) |
| 19 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 20 | ovex | |- ( B x. A ) e. _V |
|
| 21 | eqid | |- ( k e. Z |-> ( B x. A ) ) = ( k e. Z |-> ( B x. A ) ) |
|
| 22 | 21 | fvmpt2 | |- ( ( k e. Z /\ ( B x. A ) e. _V ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. A ) ) |
| 23 | 19 20 22 | sylancl | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. A ) ) |
| 24 | 3 | oveq2d | |- ( ( ph /\ k e. Z ) -> ( B x. ( F ` k ) ) = ( B x. A ) ) |
| 25 | 23 24 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) ) |
| 26 | 25 | ralrimiva | |- ( ph -> A. k e. Z ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) ) |
| 27 | nffvmpt1 | |- F/_ k ( ( k e. Z |-> ( B x. A ) ) ` m ) |
|
| 28 | 27 | nfeq1 | |- F/ k ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) |
| 29 | fveq2 | |- ( k = m -> ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( ( k e. Z |-> ( B x. A ) ) ` m ) ) |
|
| 30 | 15 | oveq2d | |- ( k = m -> ( B x. ( F ` k ) ) = ( B x. ( F ` m ) ) ) |
| 31 | 29 30 | eqeq12d | |- ( k = m -> ( ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) <-> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) ) |
| 32 | 28 31 | rspc | |- ( m e. Z -> ( A. k e. Z ( ( k e. Z |-> ( B x. A ) ) ` k ) = ( B x. ( F ` k ) ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) ) |
| 33 | 26 32 | mpan9 | |- ( ( ph /\ m e. Z ) -> ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. ( F ` m ) ) ) |
| 34 | 1 2 6 12 18 33 | isermulc2 | |- ( ph -> seq M ( + , ( k e. Z |-> ( B x. A ) ) ) ~~> ( B x. sum_ k e. Z A ) ) |
| 35 | 1 2 7 11 34 | isumclim | |- ( ph -> sum_ m e. Z ( ( k e. Z |-> ( B x. A ) ) ` m ) = ( B x. sum_ k e. Z A ) ) |
| 36 | sumfc | |- sum_ m e. Z ( ( k e. Z |-> ( B x. A ) ) ` m ) = sum_ k e. Z ( B x. A ) |
|
| 37 | 35 36 | eqtr3di | |- ( ph -> ( B x. sum_ k e. Z A ) = sum_ k e. Z ( B x. A ) ) |