This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| tngtset.2 | |- D = ( dist ` T ) |
||
| tngtset.3 | |- J = ( MetOpen ` D ) |
||
| Assertion | tngtset | |- ( ( G e. V /\ N e. W ) -> J = ( TopSet ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngtset.2 | |- D = ( dist ` T ) |
|
| 3 | tngtset.3 | |- J = ( MetOpen ` D ) |
|
| 4 | ovex | |- ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) e. _V |
|
| 5 | fvex | |- ( MetOpen ` ( N o. ( -g ` G ) ) ) e. _V |
|
| 6 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 7 | 6 | setsid | |- ( ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) e. _V /\ ( MetOpen ` ( N o. ( -g ` G ) ) ) e. _V ) -> ( MetOpen ` ( N o. ( -g ` G ) ) ) = ( TopSet ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) ) |
| 8 | 4 5 7 | mp2an | |- ( MetOpen ` ( N o. ( -g ` G ) ) ) = ( TopSet ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
| 9 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 10 | 1 9 | tngds | |- ( N e. W -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
| 11 | 2 10 | eqtr4id | |- ( N e. W -> D = ( N o. ( -g ` G ) ) ) |
| 12 | 11 | adantl | |- ( ( G e. V /\ N e. W ) -> D = ( N o. ( -g ` G ) ) ) |
| 13 | 12 | fveq2d | |- ( ( G e. V /\ N e. W ) -> ( MetOpen ` D ) = ( MetOpen ` ( N o. ( -g ` G ) ) ) ) |
| 14 | 3 13 | eqtrid | |- ( ( G e. V /\ N e. W ) -> J = ( MetOpen ` ( N o. ( -g ` G ) ) ) ) |
| 15 | eqid | |- ( N o. ( -g ` G ) ) = ( N o. ( -g ` G ) ) |
|
| 16 | eqid | |- ( MetOpen ` ( N o. ( -g ` G ) ) ) = ( MetOpen ` ( N o. ( -g ` G ) ) ) |
|
| 17 | 1 9 15 16 | tngval | |- ( ( G e. V /\ N e. W ) -> T = ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
| 18 | 17 | fveq2d | |- ( ( G e. V /\ N e. W ) -> ( TopSet ` T ) = ( TopSet ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) ) |
| 19 | 8 14 18 | 3eqtr4a | |- ( ( G e. V /\ N e. W ) -> J = ( TopSet ` T ) ) |