This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group subtraction (division) operation. For a shorter proof using ax-rep , see grpsubfvalALT . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023) (Proof shortened by AV, 19-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubval.b | |- B = ( Base ` G ) |
|
| grpsubval.p | |- .+ = ( +g ` G ) |
||
| grpsubval.i | |- I = ( invg ` G ) |
||
| grpsubval.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubfval | |- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | |- B = ( Base ` G ) |
|
| 2 | grpsubval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubval.i | |- I = ( invg ` G ) |
|
| 4 | grpsubval.m | |- .- = ( -g ` G ) |
|
| 5 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 7 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 9 | eqidd | |- ( g = G -> x = x ) |
|
| 10 | fveq2 | |- ( g = G -> ( invg ` g ) = ( invg ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( invg ` g ) = I ) |
| 12 | 11 | fveq1d | |- ( g = G -> ( ( invg ` g ) ` y ) = ( I ` y ) ) |
| 13 | 8 9 12 | oveq123d | |- ( g = G -> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) = ( x .+ ( I ` y ) ) ) |
| 14 | 6 6 13 | mpoeq123dv | |- ( g = G -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 15 | df-sbg | |- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) |
|
| 16 | 1 | fvexi | |- B e. _V |
| 17 | 2 | fvexi | |- .+ e. _V |
| 18 | 17 | rnex | |- ran .+ e. _V |
| 19 | p0ex | |- { (/) } e. _V |
|
| 20 | 18 19 | unex | |- ( ran .+ u. { (/) } ) e. _V |
| 21 | df-ov | |- ( x .+ ( I ` y ) ) = ( .+ ` <. x , ( I ` y ) >. ) |
|
| 22 | fvrn0 | |- ( .+ ` <. x , ( I ` y ) >. ) e. ( ran .+ u. { (/) } ) |
|
| 23 | 21 22 | eqeltri | |- ( x .+ ( I ` y ) ) e. ( ran .+ u. { (/) } ) |
| 24 | 23 | rgen2w | |- A. x e. B A. y e. B ( x .+ ( I ` y ) ) e. ( ran .+ u. { (/) } ) |
| 25 | 16 16 20 24 | mpoexw | |- ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) e. _V |
| 26 | 14 15 25 | fvmpt | |- ( G e. _V -> ( -g ` G ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 27 | 4 26 | eqtrid | |- ( G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 28 | fvprc | |- ( -. G e. _V -> ( -g ` G ) = (/) ) |
|
| 29 | 4 28 | eqtrid | |- ( -. G e. _V -> .- = (/) ) |
| 30 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 31 | 1 30 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 32 | 31 | olcd | |- ( -. G e. _V -> ( B = (/) \/ B = (/) ) ) |
| 33 | 0mpo0 | |- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
|
| 34 | 32 33 | syl | |- ( -. G e. _V -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
| 35 | 29 34 | eqtr4d | |- ( -. G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 36 | 27 35 | pm2.61i | |- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |