This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcterm.e | |- E = ( CatCat ` U ) |
|
| termcterm3.u | |- ( ph -> U e. V ) |
||
| termcterm3.c | |- ( ph -> C e. U ) |
||
| termcterm3.1 | |- ( ph -> ( SetCat ` 1o ) e. U ) |
||
| Assertion | termcterm3 | |- ( ph -> ( C e. TermCat <-> C e. ( TermO ` E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcterm.e | |- E = ( CatCat ` U ) |
|
| 2 | termcterm3.u | |- ( ph -> U e. V ) |
|
| 3 | termcterm3.c | |- ( ph -> C e. U ) |
|
| 4 | termcterm3.1 | |- ( ph -> ( SetCat ` 1o ) e. U ) |
|
| 5 | 2 | adantr | |- ( ( ph /\ C e. TermCat ) -> U e. V ) |
| 6 | 3 | adantr | |- ( ( ph /\ C e. TermCat ) -> C e. U ) |
| 7 | simpr | |- ( ( ph /\ C e. TermCat ) -> C e. TermCat ) |
|
| 8 | 1 5 6 7 | termcterm | |- ( ( ph /\ C e. TermCat ) -> C e. ( TermO ` E ) ) |
| 9 | setc1oterm | |- ( SetCat ` 1o ) e. TermCat |
|
| 10 | 9 | a1i | |- ( ph -> ( SetCat ` 1o ) e. TermCat ) |
| 11 | 4 10 | elind | |- ( ph -> ( SetCat ` 1o ) e. ( U i^i TermCat ) ) |
| 12 | 11 | ne0d | |- ( ph -> ( U i^i TermCat ) =/= (/) ) |
| 13 | 12 | adantr | |- ( ( ph /\ C e. ( TermO ` E ) ) -> ( U i^i TermCat ) =/= (/) ) |
| 14 | simpr | |- ( ( ph /\ C e. ( TermO ` E ) ) -> C e. ( TermO ` E ) ) |
|
| 15 | 1 13 14 | termcterm2 | |- ( ( ph /\ C e. ( TermO ` E ) ) -> C e. TermCat ) |
| 16 | 8 15 | impbida | |- ( ph -> ( C e. TermCat <-> C e. ( TermO ` E ) ) ) |