This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 18-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso2.c | |- C = ( CatCat ` U ) |
|
| thincciso2.b | |- B = ( Base ` C ) |
||
| thincciso2.u | |- ( ph -> U e. V ) |
||
| thincciso2.x | |- ( ph -> X e. B ) |
||
| thincciso2.y | |- ( ph -> Y e. B ) |
||
| thincciso4.i | |- ( ph -> X ( ~=c ` C ) Y ) |
||
| Assertion | thincciso4 | |- ( ph -> ( X e. ThinCat <-> Y e. ThinCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso2.c | |- C = ( CatCat ` U ) |
|
| 2 | thincciso2.b | |- B = ( Base ` C ) |
|
| 3 | thincciso2.u | |- ( ph -> U e. V ) |
|
| 4 | thincciso2.x | |- ( ph -> X e. B ) |
|
| 5 | thincciso2.y | |- ( ph -> Y e. B ) |
|
| 6 | thincciso4.i | |- ( ph -> X ( ~=c ` C ) Y ) |
|
| 7 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 8 | 1 | catccat | |- ( U e. V -> C e. Cat ) |
| 9 | 3 8 | syl | |- ( ph -> C e. Cat ) |
| 10 | 7 2 9 4 5 | cic | |- ( ph -> ( X ( ~=c ` C ) Y <-> E. f f e. ( X ( Iso ` C ) Y ) ) ) |
| 11 | 6 10 | mpbid | |- ( ph -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 12 | 11 | adantr | |- ( ( ph /\ X e. ThinCat ) -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 13 | 3 | ad2antrr | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> U e. V ) |
| 14 | 4 | ad2antrr | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. B ) |
| 15 | 5 | ad2antrr | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. B ) |
| 16 | simpr | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> f e. ( X ( Iso ` C ) Y ) ) |
|
| 17 | simplr | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. ThinCat ) |
|
| 18 | 1 2 13 14 15 7 16 17 | thincciso3 | |- ( ( ( ph /\ X e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) |
| 19 | 12 18 | exlimddv | |- ( ( ph /\ X e. ThinCat ) -> Y e. ThinCat ) |
| 20 | 11 | adantr | |- ( ( ph /\ Y e. ThinCat ) -> E. f f e. ( X ( Iso ` C ) Y ) ) |
| 21 | 3 | ad2antrr | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> U e. V ) |
| 22 | 4 | ad2antrr | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. B ) |
| 23 | 5 | ad2antrr | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. B ) |
| 24 | simpr | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> f e. ( X ( Iso ` C ) Y ) ) |
|
| 25 | simplr | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> Y e. ThinCat ) |
|
| 26 | 1 2 21 22 23 7 24 25 | thincciso2 | |- ( ( ( ph /\ Y e. ThinCat ) /\ f e. ( X ( Iso ` C ) Y ) ) -> X e. ThinCat ) |
| 27 | 20 26 | exlimddv | |- ( ( ph /\ Y e. ThinCat ) -> X e. ThinCat ) |
| 28 | 19 27 | impbida | |- ( ph -> ( X e. ThinCat <-> Y e. ThinCat ) ) |