This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique endofunctor (a functor from a category to itself) for a category, then it is either initial (empty) or terminal. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euendfunc2 | |- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euen1b | |- ( ( C Func C ) ~~ 1o <-> E! f f e. ( C Func C ) ) |
|
| 2 | 1 | biimpi | |- ( ( C Func C ) ~~ 1o -> E! f f e. ( C Func C ) ) |
| 3 | 2 | adantr | |- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> E! f f e. ( C Func C ) ) |
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | simpr | |- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> -. ( Base ` C ) = (/) ) |
|
| 6 | 5 | neqned | |- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> ( Base ` C ) =/= (/) ) |
| 7 | 3 4 6 | euendfunc | |- ( ( ( C Func C ) ~~ 1o /\ -. ( Base ` C ) = (/) ) -> C e. TermCat ) |
| 8 | 7 | ex | |- ( ( C Func C ) ~~ 1o -> ( -. ( Base ` C ) = (/) -> C e. TermCat ) ) |
| 9 | 8 | orrd | |- ( ( C Func C ) ~~ 1o -> ( ( Base ` C ) = (/) \/ C e. TermCat ) ) |