This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there exists a unique functor from a non-empty category, then the base of the target category is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eufunc.f | |- ( ph -> E! f f e. ( C Func D ) ) |
|
| eufunc.a | |- A = ( Base ` C ) |
||
| eufunc.0 | |- ( ph -> A =/= (/) ) |
||
| eufunc.b | |- B = ( Base ` D ) |
||
| Assertion | eufunc | |- ( ph -> E! x x e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufunc.f | |- ( ph -> E! f f e. ( C Func D ) ) |
|
| 2 | eufunc.a | |- A = ( Base ` C ) |
|
| 3 | eufunc.0 | |- ( ph -> A =/= (/) ) |
|
| 4 | eufunc.b | |- B = ( Base ` D ) |
|
| 5 | euex | |- ( E! f f e. ( C Func D ) -> E. f f e. ( C Func D ) ) |
|
| 6 | simpr | |- ( ( f e. ( C Func D ) /\ B = (/) ) -> B = (/) ) |
|
| 7 | simpl | |- ( ( f e. ( C Func D ) /\ B = (/) ) -> f e. ( C Func D ) ) |
|
| 8 | 2 4 6 7 | func0g2 | |- ( ( f e. ( C Func D ) /\ B = (/) ) -> A = (/) ) |
| 9 | 8 | ex | |- ( f e. ( C Func D ) -> ( B = (/) -> A = (/) ) ) |
| 10 | 9 | exlimiv | |- ( E. f f e. ( C Func D ) -> ( B = (/) -> A = (/) ) ) |
| 11 | 1 5 10 | 3syl | |- ( ph -> ( B = (/) -> A = (/) ) ) |
| 12 | 11 | imp | |- ( ( ph /\ B = (/) ) -> A = (/) ) |
| 13 | 3 12 | mteqand | |- ( ph -> B =/= (/) ) |
| 14 | n0 | |- ( B =/= (/) <-> E. x x e. B ) |
|
| 15 | 13 14 | sylib | |- ( ph -> E. x x e. B ) |
| 16 | 1 2 3 4 | eufunclem | |- ( ph -> B ~<_ 1o ) |
| 17 | modom2 | |- ( E* x x e. B <-> B ~<_ 1o ) |
|
| 18 | 16 17 | sylibr | |- ( ph -> E* x x e. B ) |
| 19 | df-eu | |- ( E! x x e. B <-> ( E. x x e. B /\ E* x x e. B ) ) |
|
| 20 | 15 18 19 | sylanbrc | |- ( ph -> E! x x e. B ) |