This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 13-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A - B ) + C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( A + ( C - B ) ) ) |
|
| 2 | addsubass | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( A + ( C - B ) ) ) |
|
| 3 | addsub | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - B ) = ( ( A - B ) + C ) ) |
|
| 4 | 2 3 | eqtr3d | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) ) |
| 5 | 4 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( C - B ) ) = ( ( A - B ) + C ) ) |
| 6 | 1 5 | eqtrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B - C ) ) = ( ( A - B ) + C ) ) |