This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for supmul . (Contributed by Mario Carneiro, 5-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supmul.1 | |- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
|
| supmul.2 | |- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
||
| Assertion | supmullem2 | |- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmul.1 | |- C = { z | E. v e. A E. b e. B z = ( v x. b ) } |
|
| 2 | supmul.2 | |- ( ph <-> ( ( A. x e. A 0 <_ x /\ A. x e. B 0 <_ x ) /\ ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) ) |
|
| 3 | vex | |- w e. _V |
|
| 4 | oveq1 | |- ( v = a -> ( v x. b ) = ( a x. b ) ) |
|
| 5 | 4 | eqeq2d | |- ( v = a -> ( z = ( v x. b ) <-> z = ( a x. b ) ) ) |
| 6 | 5 | rexbidv | |- ( v = a -> ( E. b e. B z = ( v x. b ) <-> E. b e. B z = ( a x. b ) ) ) |
| 7 | 6 | cbvrexvw | |- ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B z = ( a x. b ) ) |
| 8 | eqeq1 | |- ( z = w -> ( z = ( a x. b ) <-> w = ( a x. b ) ) ) |
|
| 9 | 8 | 2rexbidv | |- ( z = w -> ( E. a e. A E. b e. B z = ( a x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 10 | 7 9 | bitrid | |- ( z = w -> ( E. v e. A E. b e. B z = ( v x. b ) <-> E. a e. A E. b e. B w = ( a x. b ) ) ) |
| 11 | 3 10 1 | elab2 | |- ( w e. C <-> E. a e. A E. b e. B w = ( a x. b ) ) |
| 12 | 2 | simp2bi | |- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 13 | 12 | simp1d | |- ( ph -> A C_ RR ) |
| 14 | 13 | sseld | |- ( ph -> ( a e. A -> a e. RR ) ) |
| 15 | 2 | simp3bi | |- ( ph -> ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) ) |
| 16 | 15 | simp1d | |- ( ph -> B C_ RR ) |
| 17 | 16 | sseld | |- ( ph -> ( b e. B -> b e. RR ) ) |
| 18 | 14 17 | anim12d | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( a e. RR /\ b e. RR ) ) ) |
| 19 | remulcl | |- ( ( a e. RR /\ b e. RR ) -> ( a x. b ) e. RR ) |
|
| 20 | 18 19 | syl6 | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( a x. b ) e. RR ) ) |
| 21 | eleq1a | |- ( ( a x. b ) e. RR -> ( w = ( a x. b ) -> w e. RR ) ) |
|
| 22 | 20 21 | syl6 | |- ( ph -> ( ( a e. A /\ b e. B ) -> ( w = ( a x. b ) -> w e. RR ) ) ) |
| 23 | 22 | rexlimdvv | |- ( ph -> ( E. a e. A E. b e. B w = ( a x. b ) -> w e. RR ) ) |
| 24 | 11 23 | biimtrid | |- ( ph -> ( w e. C -> w e. RR ) ) |
| 25 | 24 | ssrdv | |- ( ph -> C C_ RR ) |
| 26 | 12 | simp2d | |- ( ph -> A =/= (/) ) |
| 27 | 15 | simp2d | |- ( ph -> B =/= (/) ) |
| 28 | ovex | |- ( a x. b ) e. _V |
|
| 29 | 28 | isseti | |- E. w w = ( a x. b ) |
| 30 | 29 | rgenw | |- A. b e. B E. w w = ( a x. b ) |
| 31 | r19.2z | |- ( ( B =/= (/) /\ A. b e. B E. w w = ( a x. b ) ) -> E. b e. B E. w w = ( a x. b ) ) |
|
| 32 | 27 30 31 | sylancl | |- ( ph -> E. b e. B E. w w = ( a x. b ) ) |
| 33 | rexcom4 | |- ( E. b e. B E. w w = ( a x. b ) <-> E. w E. b e. B w = ( a x. b ) ) |
|
| 34 | 32 33 | sylib | |- ( ph -> E. w E. b e. B w = ( a x. b ) ) |
| 35 | 34 | ralrimivw | |- ( ph -> A. a e. A E. w E. b e. B w = ( a x. b ) ) |
| 36 | r19.2z | |- ( ( A =/= (/) /\ A. a e. A E. w E. b e. B w = ( a x. b ) ) -> E. a e. A E. w E. b e. B w = ( a x. b ) ) |
|
| 37 | 26 35 36 | syl2anc | |- ( ph -> E. a e. A E. w E. b e. B w = ( a x. b ) ) |
| 38 | rexcom4 | |- ( E. a e. A E. w E. b e. B w = ( a x. b ) <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
|
| 39 | 37 38 | sylib | |- ( ph -> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
| 40 | n0 | |- ( C =/= (/) <-> E. w w e. C ) |
|
| 41 | 11 | exbii | |- ( E. w w e. C <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
| 42 | 40 41 | bitri | |- ( C =/= (/) <-> E. w E. a e. A E. b e. B w = ( a x. b ) ) |
| 43 | 39 42 | sylibr | |- ( ph -> C =/= (/) ) |
| 44 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) -> sup ( A , RR , < ) e. RR ) |
|
| 45 | 12 44 | syl | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 46 | suprcl | |- ( ( B C_ RR /\ B =/= (/) /\ E. x e. RR A. y e. B y <_ x ) -> sup ( B , RR , < ) e. RR ) |
|
| 47 | 15 46 | syl | |- ( ph -> sup ( B , RR , < ) e. RR ) |
| 48 | 45 47 | remulcld | |- ( ph -> ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR ) |
| 49 | 1 2 | supmullem1 | |- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) |
| 50 | brralrspcev | |- ( ( ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) x. sup ( B , RR , < ) ) ) -> E. x e. RR A. w e. C w <_ x ) |
|
| 51 | 48 49 50 | syl2anc | |- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 52 | 25 43 51 | 3jca | |- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |