This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubm2.b | |- B = ( Base ` M ) |
|
| issubm2.z | |- .0. = ( 0g ` M ) |
||
| issubm2.h | |- H = ( M |`s S ) |
||
| Assertion | issubm2 | |- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ B /\ .0. e. S /\ H e. Mnd ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubm2.b | |- B = ( Base ` M ) |
|
| 2 | issubm2.z | |- .0. = ( 0g ` M ) |
|
| 3 | issubm2.h | |- H = ( M |`s S ) |
|
| 4 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 5 | 1 2 4 | issubm | |- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ B /\ .0. e. S /\ A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) ) ) |
| 6 | 1 4 2 3 | issubmnd | |- ( ( M e. Mnd /\ S C_ B /\ .0. e. S ) -> ( H e. Mnd <-> A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) ) |
| 7 | 6 | bicomd | |- ( ( M e. Mnd /\ S C_ B /\ .0. e. S ) -> ( A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S <-> H e. Mnd ) ) |
| 8 | 7 | 3expb | |- ( ( M e. Mnd /\ ( S C_ B /\ .0. e. S ) ) -> ( A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S <-> H e. Mnd ) ) |
| 9 | 8 | pm5.32da | |- ( M e. Mnd -> ( ( ( S C_ B /\ .0. e. S ) /\ A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) <-> ( ( S C_ B /\ .0. e. S ) /\ H e. Mnd ) ) ) |
| 10 | df-3an | |- ( ( S C_ B /\ .0. e. S /\ A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) <-> ( ( S C_ B /\ .0. e. S ) /\ A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) ) |
|
| 11 | df-3an | |- ( ( S C_ B /\ .0. e. S /\ H e. Mnd ) <-> ( ( S C_ B /\ .0. e. S ) /\ H e. Mnd ) ) |
|
| 12 | 9 10 11 | 3bitr4g | |- ( M e. Mnd -> ( ( S C_ B /\ .0. e. S /\ A. x e. S A. y e. S ( x ( +g ` M ) y ) e. S ) <-> ( S C_ B /\ .0. e. S /\ H e. Mnd ) ) ) |
| 13 | 5 12 | bitrd | |- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ B /\ .0. e. S /\ H e. Mnd ) ) ) |