This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer subset relation on objects from the subcategory subset relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| isssc.2 | |- ( ph -> J Fn ( T X. T ) ) |
||
| ssc1.3 | |- ( ph -> H C_cat J ) |
||
| Assertion | ssc1 | |- ( ph -> S C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| 2 | isssc.2 | |- ( ph -> J Fn ( T X. T ) ) |
|
| 3 | ssc1.3 | |- ( ph -> H C_cat J ) |
|
| 4 | sscrel | |- Rel C_cat |
|
| 5 | 4 | brrelex2i | |- ( H C_cat J -> J e. _V ) |
| 6 | 3 5 | syl | |- ( ph -> J e. _V ) |
| 7 | 2 | ssclem | |- ( ph -> ( J e. _V <-> T e. _V ) ) |
| 8 | 6 7 | mpbid | |- ( ph -> T e. _V ) |
| 9 | 1 2 8 | isssc | |- ( ph -> ( H C_cat J <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 10 | 3 9 | mpbid | |- ( ph -> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) |
| 11 | 10 | simpld | |- ( ph -> S C_ T ) |