This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescbas.d | |- D = ( C |`cat H ) |
|
| rescbas.b | |- B = ( Base ` C ) |
||
| rescbas.c | |- ( ph -> C e. V ) |
||
| rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
||
| rescbas.s | |- ( ph -> S C_ B ) |
||
| Assertion | reschomf | |- ( ph -> H = ( Homf ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescbas.d | |- D = ( C |`cat H ) |
|
| 2 | rescbas.b | |- B = ( Base ` C ) |
|
| 3 | rescbas.c | |- ( ph -> C e. V ) |
|
| 4 | rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
|
| 5 | rescbas.s | |- ( ph -> S C_ B ) |
|
| 6 | 1 2 3 4 5 | reschom | |- ( ph -> H = ( Hom ` D ) ) |
| 7 | 1 2 3 4 5 | rescbas | |- ( ph -> S = ( Base ` D ) ) |
| 8 | 7 | sqxpeqd | |- ( ph -> ( S X. S ) = ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 9 | 6 8 | fneq12d | |- ( ph -> ( H Fn ( S X. S ) <-> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) ) |
| 10 | 4 9 | mpbid | |- ( ph -> ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 11 | fnov | |- ( ( Hom ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
|
| 12 | 10 11 | sylib | |- ( ph -> ( Hom ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
| 13 | 6 12 | eqtrd | |- ( ph -> H = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) ) |
| 14 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 15 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 16 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 17 | 14 15 16 | homffval | |- ( Homf ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x ( Hom ` D ) y ) ) |
| 18 | 13 17 | eqtr4di | |- ( ph -> H = ( Homf ` D ) ) |