This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sscfn1.1 | |- ( ph -> H C_cat J ) |
|
| sscfn1.2 | |- ( ph -> S = dom dom H ) |
||
| Assertion | sscfn1 | |- ( ph -> H Fn ( S X. S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscfn1.1 | |- ( ph -> H C_cat J ) |
|
| 2 | sscfn1.2 | |- ( ph -> S = dom dom H ) |
|
| 3 | brssc | |- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
|
| 4 | 1 3 | sylib | |- ( ph -> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| 5 | ixpfn | |- ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( s X. s ) ) |
|
| 6 | simpr | |- ( ( ph /\ H Fn ( s X. s ) ) -> H Fn ( s X. s ) ) |
|
| 7 | 2 | adantr | |- ( ( ph /\ H Fn ( s X. s ) ) -> S = dom dom H ) |
| 8 | fndm | |- ( H Fn ( s X. s ) -> dom H = ( s X. s ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom H = ( s X. s ) ) |
| 10 | 9 | dmeqd | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom dom H = dom ( s X. s ) ) |
| 11 | dmxpid | |- dom ( s X. s ) = s |
|
| 12 | 10 11 | eqtrdi | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom dom H = s ) |
| 13 | 7 12 | eqtr2d | |- ( ( ph /\ H Fn ( s X. s ) ) -> s = S ) |
| 14 | 13 | sqxpeqd | |- ( ( ph /\ H Fn ( s X. s ) ) -> ( s X. s ) = ( S X. S ) ) |
| 15 | 14 | fneq2d | |- ( ( ph /\ H Fn ( s X. s ) ) -> ( H Fn ( s X. s ) <-> H Fn ( S X. S ) ) ) |
| 16 | 6 15 | mpbid | |- ( ( ph /\ H Fn ( s X. s ) ) -> H Fn ( S X. S ) ) |
| 17 | 16 | ex | |- ( ph -> ( H Fn ( s X. s ) -> H Fn ( S X. S ) ) ) |
| 18 | 5 17 | syl5 | |- ( ph -> ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( S X. S ) ) ) |
| 19 | 18 | rexlimdvw | |- ( ph -> ( E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H Fn ( S X. S ) ) ) |
| 20 | 19 | adantld | |- ( ph -> ( ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> H Fn ( S X. S ) ) ) |
| 21 | 20 | exlimdv | |- ( ph -> ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> H Fn ( S X. S ) ) ) |
| 22 | 4 21 | mpd | |- ( ph -> H Fn ( S X. S ) ) |