This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | |- .+ = ( +g ` G ) |
|
| subgdisj.o | |- .0. = ( 0g ` G ) |
||
| subgdisj.z | |- Z = ( Cntz ` G ) |
||
| subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
||
| subgdisj.a | |- ( ph -> A e. T ) |
||
| subgdisj.c | |- ( ph -> C e. T ) |
||
| subgdisj.b | |- ( ph -> B e. U ) |
||
| subgdisj.d | |- ( ph -> D e. U ) |
||
| subgdisj.j | |- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
||
| Assertion | subgdisj1 | |- ( ph -> A = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | |- .+ = ( +g ` G ) |
|
| 2 | subgdisj.o | |- .0. = ( 0g ` G ) |
|
| 3 | subgdisj.z | |- Z = ( Cntz ` G ) |
|
| 4 | subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 5 | subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 6 | subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 7 | subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 8 | subgdisj.a | |- ( ph -> A e. T ) |
|
| 9 | subgdisj.c | |- ( ph -> C e. T ) |
|
| 10 | subgdisj.b | |- ( ph -> B e. U ) |
|
| 11 | subgdisj.d | |- ( ph -> D e. U ) |
|
| 12 | subgdisj.j | |- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
|
| 13 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 14 | 13 | subgsubcl | |- ( ( T e. ( SubGrp ` G ) /\ A e. T /\ C e. T ) -> ( A ( -g ` G ) C ) e. T ) |
| 15 | 4 8 9 14 | syl3anc | |- ( ph -> ( A ( -g ` G ) C ) e. T ) |
| 16 | 7 9 | sseldd | |- ( ph -> C e. ( Z ` U ) ) |
| 17 | 1 3 | cntzi | |- ( ( C e. ( Z ` U ) /\ B e. U ) -> ( C .+ B ) = ( B .+ C ) ) |
| 18 | 16 10 17 | syl2anc | |- ( ph -> ( C .+ B ) = ( B .+ C ) ) |
| 19 | 12 18 | oveq12d | |- ( ph -> ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
| 20 | subgrcl | |- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 21 | 4 20 | syl | |- ( ph -> G e. Grp ) |
| 22 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 23 | 22 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 24 | 4 23 | syl | |- ( ph -> T C_ ( Base ` G ) ) |
| 25 | 24 8 | sseldd | |- ( ph -> A e. ( Base ` G ) ) |
| 26 | 22 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 27 | 5 26 | syl | |- ( ph -> U C_ ( Base ` G ) ) |
| 28 | 27 10 | sseldd | |- ( ph -> B e. ( Base ` G ) ) |
| 29 | 22 1 | grpcl | |- ( ( G e. Grp /\ A e. ( Base ` G ) /\ B e. ( Base ` G ) ) -> ( A .+ B ) e. ( Base ` G ) ) |
| 30 | 21 25 28 29 | syl3anc | |- ( ph -> ( A .+ B ) e. ( Base ` G ) ) |
| 31 | 24 9 | sseldd | |- ( ph -> C e. ( Base ` G ) ) |
| 32 | 22 1 13 | grpsubsub4 | |- ( ( G e. Grp /\ ( ( A .+ B ) e. ( Base ` G ) /\ B e. ( Base ` G ) /\ C e. ( Base ` G ) ) ) -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) ) |
| 33 | 21 30 28 31 32 | syl13anc | |- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( A .+ B ) ( -g ` G ) ( C .+ B ) ) ) |
| 34 | 12 30 | eqeltrrd | |- ( ph -> ( C .+ D ) e. ( Base ` G ) ) |
| 35 | 22 1 13 | grpsubsub4 | |- ( ( G e. Grp /\ ( ( C .+ D ) e. ( Base ` G ) /\ C e. ( Base ` G ) /\ B e. ( Base ` G ) ) ) -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
| 36 | 21 34 31 28 35 | syl13anc | |- ( ph -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( ( C .+ D ) ( -g ` G ) ( B .+ C ) ) ) |
| 37 | 19 33 36 | 3eqtr4d | |- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) ) |
| 38 | 22 1 13 | grppncan | |- ( ( G e. Grp /\ A e. ( Base ` G ) /\ B e. ( Base ` G ) ) -> ( ( A .+ B ) ( -g ` G ) B ) = A ) |
| 39 | 21 25 28 38 | syl3anc | |- ( ph -> ( ( A .+ B ) ( -g ` G ) B ) = A ) |
| 40 | 39 | oveq1d | |- ( ph -> ( ( ( A .+ B ) ( -g ` G ) B ) ( -g ` G ) C ) = ( A ( -g ` G ) C ) ) |
| 41 | 1 3 | cntzi | |- ( ( C e. ( Z ` U ) /\ D e. U ) -> ( C .+ D ) = ( D .+ C ) ) |
| 42 | 16 11 41 | syl2anc | |- ( ph -> ( C .+ D ) = ( D .+ C ) ) |
| 43 | 42 | oveq1d | |- ( ph -> ( ( C .+ D ) ( -g ` G ) C ) = ( ( D .+ C ) ( -g ` G ) C ) ) |
| 44 | 27 11 | sseldd | |- ( ph -> D e. ( Base ` G ) ) |
| 45 | 22 1 13 | grppncan | |- ( ( G e. Grp /\ D e. ( Base ` G ) /\ C e. ( Base ` G ) ) -> ( ( D .+ C ) ( -g ` G ) C ) = D ) |
| 46 | 21 44 31 45 | syl3anc | |- ( ph -> ( ( D .+ C ) ( -g ` G ) C ) = D ) |
| 47 | 43 46 | eqtrd | |- ( ph -> ( ( C .+ D ) ( -g ` G ) C ) = D ) |
| 48 | 47 | oveq1d | |- ( ph -> ( ( ( C .+ D ) ( -g ` G ) C ) ( -g ` G ) B ) = ( D ( -g ` G ) B ) ) |
| 49 | 37 40 48 | 3eqtr3d | |- ( ph -> ( A ( -g ` G ) C ) = ( D ( -g ` G ) B ) ) |
| 50 | 13 | subgsubcl | |- ( ( U e. ( SubGrp ` G ) /\ D e. U /\ B e. U ) -> ( D ( -g ` G ) B ) e. U ) |
| 51 | 5 11 10 50 | syl3anc | |- ( ph -> ( D ( -g ` G ) B ) e. U ) |
| 52 | 49 51 | eqeltrd | |- ( ph -> ( A ( -g ` G ) C ) e. U ) |
| 53 | 15 52 | elind | |- ( ph -> ( A ( -g ` G ) C ) e. ( T i^i U ) ) |
| 54 | 53 6 | eleqtrd | |- ( ph -> ( A ( -g ` G ) C ) e. { .0. } ) |
| 55 | elsni | |- ( ( A ( -g ` G ) C ) e. { .0. } -> ( A ( -g ` G ) C ) = .0. ) |
|
| 56 | 54 55 | syl | |- ( ph -> ( A ( -g ` G ) C ) = .0. ) |
| 57 | 22 2 13 | grpsubeq0 | |- ( ( G e. Grp /\ A e. ( Base ` G ) /\ C e. ( Base ` G ) ) -> ( ( A ( -g ` G ) C ) = .0. <-> A = C ) ) |
| 58 | 21 25 31 57 | syl3anc | |- ( ph -> ( ( A ( -g ` G ) C ) = .0. <-> A = C ) ) |
| 59 | 56 58 | mpbid | |- ( ph -> A = C ) |