This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction ( pncan analog). (Contributed by NM, 16-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | |- B = ( Base ` G ) |
|
| grpsubadd.p | |- .+ = ( +g ` G ) |
||
| grpsubadd.m | |- .- = ( -g ` G ) |
||
| Assertion | grppncan | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | |- B = ( Base ` G ) |
|
| 2 | grpsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | simp1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> G e. Grp ) |
|
| 5 | simp2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | simp3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 7 | 1 2 3 | grpaddsubass | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Y e. B ) ) -> ( ( X .+ Y ) .- Y ) = ( X .+ ( Y .- Y ) ) ) |
| 8 | 4 5 6 6 7 | syl13anc | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- Y ) = ( X .+ ( Y .- Y ) ) ) |
| 9 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 10 | 1 9 3 | grpsubid | |- ( ( G e. Grp /\ Y e. B ) -> ( Y .- Y ) = ( 0g ` G ) ) |
| 11 | 10 | oveq2d | |- ( ( G e. Grp /\ Y e. B ) -> ( X .+ ( Y .- Y ) ) = ( X .+ ( 0g ` G ) ) ) |
| 12 | 11 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( Y .- Y ) ) = ( X .+ ( 0g ` G ) ) ) |
| 13 | 1 2 9 | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( 0g ` G ) ) = X ) |
| 14 | 13 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( 0g ` G ) ) = X ) |
| 15 | 8 12 14 | 3eqtrd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ Y ) .- Y ) = X ) |