This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgdisj.p | |- .+ = ( +g ` G ) |
|
| subgdisj.o | |- .0. = ( 0g ` G ) |
||
| subgdisj.z | |- Z = ( Cntz ` G ) |
||
| subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
||
| subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
||
| subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
||
| subgdisj.a | |- ( ph -> A e. T ) |
||
| subgdisj.c | |- ( ph -> C e. T ) |
||
| subgdisj.b | |- ( ph -> B e. U ) |
||
| subgdisj.d | |- ( ph -> D e. U ) |
||
| subgdisj.j | |- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
||
| Assertion | subgdisj2 | |- ( ph -> B = D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgdisj.p | |- .+ = ( +g ` G ) |
|
| 2 | subgdisj.o | |- .0. = ( 0g ` G ) |
|
| 3 | subgdisj.z | |- Z = ( Cntz ` G ) |
|
| 4 | subgdisj.t | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 5 | subgdisj.u | |- ( ph -> U e. ( SubGrp ` G ) ) |
|
| 6 | subgdisj.i | |- ( ph -> ( T i^i U ) = { .0. } ) |
|
| 7 | subgdisj.s | |- ( ph -> T C_ ( Z ` U ) ) |
|
| 8 | subgdisj.a | |- ( ph -> A e. T ) |
|
| 9 | subgdisj.c | |- ( ph -> C e. T ) |
|
| 10 | subgdisj.b | |- ( ph -> B e. U ) |
|
| 11 | subgdisj.d | |- ( ph -> D e. U ) |
|
| 12 | subgdisj.j | |- ( ph -> ( A .+ B ) = ( C .+ D ) ) |
|
| 13 | incom | |- ( T i^i U ) = ( U i^i T ) |
|
| 14 | 13 6 | eqtr3id | |- ( ph -> ( U i^i T ) = { .0. } ) |
| 15 | 3 4 5 7 | cntzrecd | |- ( ph -> U C_ ( Z ` T ) ) |
| 16 | 7 8 | sseldd | |- ( ph -> A e. ( Z ` U ) ) |
| 17 | 1 3 | cntzi | |- ( ( A e. ( Z ` U ) /\ B e. U ) -> ( A .+ B ) = ( B .+ A ) ) |
| 18 | 16 10 17 | syl2anc | |- ( ph -> ( A .+ B ) = ( B .+ A ) ) |
| 19 | 7 9 | sseldd | |- ( ph -> C e. ( Z ` U ) ) |
| 20 | 1 3 | cntzi | |- ( ( C e. ( Z ` U ) /\ D e. U ) -> ( C .+ D ) = ( D .+ C ) ) |
| 21 | 19 11 20 | syl2anc | |- ( ph -> ( C .+ D ) = ( D .+ C ) ) |
| 22 | 12 18 21 | 3eqtr3d | |- ( ph -> ( B .+ A ) = ( D .+ C ) ) |
| 23 | 1 2 3 5 4 14 15 10 11 8 9 22 | subgdisj1 | |- ( ph -> B = D ) |