This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | strle1.i | |- I e. NN |
|
| strle1.a | |- A = I |
||
| Assertion | strle1 | |- { <. A , X >. } Struct <. I , I >. |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | |- I e. NN |
|
| 2 | strle1.a | |- A = I |
|
| 3 | 1 | nnrei | |- I e. RR |
| 4 | 3 | leidi | |- I <_ I |
| 5 | 1 1 4 | 3pm3.2i | |- ( I e. NN /\ I e. NN /\ I <_ I ) |
| 6 | difss | |- ( { <. A , X >. } \ { (/) } ) C_ { <. A , X >. } |
|
| 7 | 2 1 | eqeltri | |- A e. NN |
| 8 | funsng | |- ( ( A e. NN /\ X e. _V ) -> Fun { <. A , X >. } ) |
|
| 9 | 7 8 | mpan | |- ( X e. _V -> Fun { <. A , X >. } ) |
| 10 | funss | |- ( ( { <. A , X >. } \ { (/) } ) C_ { <. A , X >. } -> ( Fun { <. A , X >. } -> Fun ( { <. A , X >. } \ { (/) } ) ) ) |
|
| 11 | 6 9 10 | mpsyl | |- ( X e. _V -> Fun ( { <. A , X >. } \ { (/) } ) ) |
| 12 | fun0 | |- Fun (/) |
|
| 13 | opprc2 | |- ( -. X e. _V -> <. A , X >. = (/) ) |
|
| 14 | 13 | sneqd | |- ( -. X e. _V -> { <. A , X >. } = { (/) } ) |
| 15 | 14 | difeq1d | |- ( -. X e. _V -> ( { <. A , X >. } \ { (/) } ) = ( { (/) } \ { (/) } ) ) |
| 16 | difid | |- ( { (/) } \ { (/) } ) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( -. X e. _V -> ( { <. A , X >. } \ { (/) } ) = (/) ) |
| 18 | 17 | funeqd | |- ( -. X e. _V -> ( Fun ( { <. A , X >. } \ { (/) } ) <-> Fun (/) ) ) |
| 19 | 12 18 | mpbiri | |- ( -. X e. _V -> Fun ( { <. A , X >. } \ { (/) } ) ) |
| 20 | 11 19 | pm2.61i | |- Fun ( { <. A , X >. } \ { (/) } ) |
| 21 | dmsnopss | |- dom { <. A , X >. } C_ { A } |
|
| 22 | 2 | sneqi | |- { A } = { I } |
| 23 | 1 | nnzi | |- I e. ZZ |
| 24 | fzsn | |- ( I e. ZZ -> ( I ... I ) = { I } ) |
|
| 25 | 23 24 | ax-mp | |- ( I ... I ) = { I } |
| 26 | 22 25 | eqtr4i | |- { A } = ( I ... I ) |
| 27 | 21 26 | sseqtri | |- dom { <. A , X >. } C_ ( I ... I ) |
| 28 | isstruct | |- ( { <. A , X >. } Struct <. I , I >. <-> ( ( I e. NN /\ I e. NN /\ I <_ I ) /\ Fun ( { <. A , X >. } \ { (/) } ) /\ dom { <. A , X >. } C_ ( I ... I ) ) ) |
|
| 29 | 5 20 27 28 | mpbir3an | |- { <. A , X >. } Struct <. I , I >. |