This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a structure with components in M ... N . (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isstruct | |- ( F Struct <. M , N >. <-> ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( M ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2 | |- ( F Struct <. M , N >. <-> ( <. M , N >. e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` <. M , N >. ) ) ) |
|
| 2 | df-3an | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) <-> ( ( M e. NN /\ N e. NN ) /\ M <_ N ) ) |
|
| 3 | brinxp2 | |- ( M ( <_ i^i ( NN X. NN ) ) N <-> ( ( M e. NN /\ N e. NN ) /\ M <_ N ) ) |
|
| 4 | df-br | |- ( M ( <_ i^i ( NN X. NN ) ) N <-> <. M , N >. e. ( <_ i^i ( NN X. NN ) ) ) |
|
| 5 | 2 3 4 | 3bitr2i | |- ( ( M e. NN /\ N e. NN /\ M <_ N ) <-> <. M , N >. e. ( <_ i^i ( NN X. NN ) ) ) |
| 6 | biid | |- ( Fun ( F \ { (/) } ) <-> Fun ( F \ { (/) } ) ) |
|
| 7 | df-ov | |- ( M ... N ) = ( ... ` <. M , N >. ) |
|
| 8 | 7 | sseq2i | |- ( dom F C_ ( M ... N ) <-> dom F C_ ( ... ` <. M , N >. ) ) |
| 9 | 5 6 8 | 3anbi123i | |- ( ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( M ... N ) ) <-> ( <. M , N >. e. ( <_ i^i ( NN X. NN ) ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( ... ` <. M , N >. ) ) ) |
| 10 | 1 9 | bitr4i | |- ( F Struct <. M , N >. <-> ( ( M e. NN /\ N e. NN /\ M <_ N ) /\ Fun ( F \ { (/) } ) /\ dom F C_ ( M ... N ) ) ) |