This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssxr | |- ( A C_ RR* -> ( A C_ RR \/ +oo e. A \/ -oo e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr | |- { +oo , -oo } = ( { +oo } u. { -oo } ) |
|
| 2 | 1 | ineq2i | |- ( A i^i { +oo , -oo } ) = ( A i^i ( { +oo } u. { -oo } ) ) |
| 3 | indi | |- ( A i^i ( { +oo } u. { -oo } ) ) = ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) |
|
| 4 | 2 3 | eqtri | |- ( A i^i { +oo , -oo } ) = ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) |
| 5 | disjsn | |- ( ( A i^i { +oo } ) = (/) <-> -. +oo e. A ) |
|
| 6 | disjsn | |- ( ( A i^i { -oo } ) = (/) <-> -. -oo e. A ) |
|
| 7 | 5 6 | anbi12i | |- ( ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) <-> ( -. +oo e. A /\ -. -oo e. A ) ) |
| 8 | 7 | biimpri | |- ( ( -. +oo e. A /\ -. -oo e. A ) -> ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) ) |
| 9 | pm4.56 | |- ( ( -. +oo e. A /\ -. -oo e. A ) <-> -. ( +oo e. A \/ -oo e. A ) ) |
|
| 10 | un00 | |- ( ( ( A i^i { +oo } ) = (/) /\ ( A i^i { -oo } ) = (/) ) <-> ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) = (/) ) |
|
| 11 | 8 9 10 | 3imtr3i | |- ( -. ( +oo e. A \/ -oo e. A ) -> ( ( A i^i { +oo } ) u. ( A i^i { -oo } ) ) = (/) ) |
| 12 | 4 11 | eqtrid | |- ( -. ( +oo e. A \/ -oo e. A ) -> ( A i^i { +oo , -oo } ) = (/) ) |
| 13 | reldisj | |- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( A i^i { +oo , -oo } ) = (/) <-> A C_ ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) ) ) |
|
| 14 | renfdisj | |- ( RR i^i { +oo , -oo } ) = (/) |
|
| 15 | disj3 | |- ( ( RR i^i { +oo , -oo } ) = (/) <-> RR = ( RR \ { +oo , -oo } ) ) |
|
| 16 | 14 15 | mpbi | |- RR = ( RR \ { +oo , -oo } ) |
| 17 | difun2 | |- ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) = ( RR \ { +oo , -oo } ) |
|
| 18 | 16 17 | eqtr4i | |- RR = ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) |
| 19 | 18 | sseq2i | |- ( A C_ RR <-> A C_ ( ( RR u. { +oo , -oo } ) \ { +oo , -oo } ) ) |
| 20 | 13 19 | bitr4di | |- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( A i^i { +oo , -oo } ) = (/) <-> A C_ RR ) ) |
| 21 | 12 20 | imbitrid | |- ( A C_ ( RR u. { +oo , -oo } ) -> ( -. ( +oo e. A \/ -oo e. A ) -> A C_ RR ) ) |
| 22 | 21 | orrd | |- ( A C_ ( RR u. { +oo , -oo } ) -> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
| 23 | df-xr | |- RR* = ( RR u. { +oo , -oo } ) |
|
| 24 | 23 | sseq2i | |- ( A C_ RR* <-> A C_ ( RR u. { +oo , -oo } ) ) |
| 25 | 3orrot | |- ( ( A C_ RR \/ +oo e. A \/ -oo e. A ) <-> ( +oo e. A \/ -oo e. A \/ A C_ RR ) ) |
|
| 26 | df-3or | |- ( ( +oo e. A \/ -oo e. A \/ A C_ RR ) <-> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
|
| 27 | 25 26 | bitri | |- ( ( A C_ RR \/ +oo e. A \/ -oo e. A ) <-> ( ( +oo e. A \/ -oo e. A ) \/ A C_ RR ) ) |
| 28 | 22 24 27 | 3imtr4i | |- ( A C_ RR* -> ( A C_ RR \/ +oo e. A \/ -oo e. A ) ) |