This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard less-than
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltxrlt | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brun | |- ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B <-> ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) ) |
|
| 2 | brxp | |- ( A ( ( RR u. { -oo } ) X. { +oo } ) B <-> ( A e. ( RR u. { -oo } ) /\ B e. { +oo } ) ) |
|
| 3 | elsni | |- ( B e. { +oo } -> B = +oo ) |
|
| 4 | pnfnre | |- +oo e/ RR |
|
| 5 | 4 | neli | |- -. +oo e. RR |
| 6 | simpr | |- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
|
| 7 | eleq1 | |- ( B = +oo -> ( B e. RR <-> +oo e. RR ) ) |
|
| 8 | 6 7 | imbitrid | |- ( B = +oo -> ( ( A e. RR /\ B e. RR ) -> +oo e. RR ) ) |
| 9 | 5 8 | mtoi | |- ( B = +oo -> -. ( A e. RR /\ B e. RR ) ) |
| 10 | 3 9 | syl | |- ( B e. { +oo } -> -. ( A e. RR /\ B e. RR ) ) |
| 11 | 2 10 | simplbiim | |- ( A ( ( RR u. { -oo } ) X. { +oo } ) B -> -. ( A e. RR /\ B e. RR ) ) |
| 12 | brxp | |- ( A ( { -oo } X. RR ) B <-> ( A e. { -oo } /\ B e. RR ) ) |
|
| 13 | elsni | |- ( A e. { -oo } -> A = -oo ) |
|
| 14 | mnfnre | |- -oo e/ RR |
|
| 15 | 14 | neli | |- -. -oo e. RR |
| 16 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 17 | eleq1 | |- ( A = -oo -> ( A e. RR <-> -oo e. RR ) ) |
|
| 18 | 16 17 | imbitrid | |- ( A = -oo -> ( ( A e. RR /\ B e. RR ) -> -oo e. RR ) ) |
| 19 | 15 18 | mtoi | |- ( A = -oo -> -. ( A e. RR /\ B e. RR ) ) |
| 20 | 13 19 | syl | |- ( A e. { -oo } -> -. ( A e. RR /\ B e. RR ) ) |
| 21 | 20 | adantr | |- ( ( A e. { -oo } /\ B e. RR ) -> -. ( A e. RR /\ B e. RR ) ) |
| 22 | 12 21 | sylbi | |- ( A ( { -oo } X. RR ) B -> -. ( A e. RR /\ B e. RR ) ) |
| 23 | 11 22 | jaoi | |- ( ( A ( ( RR u. { -oo } ) X. { +oo } ) B \/ A ( { -oo } X. RR ) B ) -> -. ( A e. RR /\ B e. RR ) ) |
| 24 | 1 23 | sylbi | |- ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B -> -. ( A e. RR /\ B e. RR ) ) |
| 25 | 24 | con2i | |- ( ( A e. RR /\ B e. RR ) -> -. A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B ) |
| 26 | df-ltxr | |- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 27 | 26 | equncomi | |- < = ( ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) u. { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 28 | 27 | breqi | |- ( A < B <-> A ( ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) u. { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 29 | brun | |- ( A ( ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) u. { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 30 | df-or | |- ( ( A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B \/ A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 31 | 28 29 30 | 3bitri | |- ( A < B <-> ( -. A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B -> A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 32 | biimt | |- ( -. A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B -> ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 33 | 31 32 | bitr4id | |- ( -. A ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) B -> ( A < B <-> A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 34 | 25 33 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 35 | breq12 | |- ( ( x = A /\ y = B ) -> ( x |
|
| 36 | df-3an | |- ( ( x e. RR /\ y e. RR /\ x |
|
| 37 | 36 | opabbii | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 38 | 35 37 | brab2a | |- ( A { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 39 | 38 | baibr | |- ( ( A e. RR /\ B e. RR ) -> ( A |
| 40 | 34 39 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |