This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | un00 | |- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq12 | |- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = ( (/) u. (/) ) ) |
|
| 2 | un0 | |- ( (/) u. (/) ) = (/) |
|
| 3 | 1 2 | eqtrdi | |- ( ( A = (/) /\ B = (/) ) -> ( A u. B ) = (/) ) |
| 4 | ssun1 | |- A C_ ( A u. B ) |
|
| 5 | sseq2 | |- ( ( A u. B ) = (/) -> ( A C_ ( A u. B ) <-> A C_ (/) ) ) |
|
| 6 | 4 5 | mpbii | |- ( ( A u. B ) = (/) -> A C_ (/) ) |
| 7 | ss0b | |- ( A C_ (/) <-> A = (/) ) |
|
| 8 | 6 7 | sylib | |- ( ( A u. B ) = (/) -> A = (/) ) |
| 9 | ssun2 | |- B C_ ( A u. B ) |
|
| 10 | sseq2 | |- ( ( A u. B ) = (/) -> ( B C_ ( A u. B ) <-> B C_ (/) ) ) |
|
| 11 | 9 10 | mpbii | |- ( ( A u. B ) = (/) -> B C_ (/) ) |
| 12 | ss0b | |- ( B C_ (/) <-> B = (/) ) |
|
| 13 | 11 12 | sylib | |- ( ( A u. B ) = (/) -> B = (/) ) |
| 14 | 8 13 | jca | |- ( ( A u. B ) = (/) -> ( A = (/) /\ B = (/) ) ) |
| 15 | 3 14 | impbii | |- ( ( A = (/) /\ B = (/) ) <-> ( A u. B ) = (/) ) |