This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssunsn | |- ( ( B C_ A /\ A C_ ( B u. { C } ) ) <-> ( A = B \/ A = ( B u. { C } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssunsn2 | |- ( ( B C_ A /\ A C_ ( B u. { C } ) ) <-> ( ( B C_ A /\ A C_ B ) \/ ( ( B u. { C } ) C_ A /\ A C_ ( B u. { C } ) ) ) ) |
|
| 2 | ancom | |- ( ( B C_ A /\ A C_ B ) <-> ( A C_ B /\ B C_ A ) ) |
|
| 3 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 4 | 2 3 | bitr4i | |- ( ( B C_ A /\ A C_ B ) <-> A = B ) |
| 5 | ancom | |- ( ( ( B u. { C } ) C_ A /\ A C_ ( B u. { C } ) ) <-> ( A C_ ( B u. { C } ) /\ ( B u. { C } ) C_ A ) ) |
|
| 6 | eqss | |- ( A = ( B u. { C } ) <-> ( A C_ ( B u. { C } ) /\ ( B u. { C } ) C_ A ) ) |
|
| 7 | 5 6 | bitr4i | |- ( ( ( B u. { C } ) C_ A /\ A C_ ( B u. { C } ) ) <-> A = ( B u. { C } ) ) |
| 8 | 4 7 | orbi12i | |- ( ( ( B C_ A /\ A C_ B ) \/ ( ( B u. { C } ) C_ A /\ A C_ ( B u. { C } ) ) ) <-> ( A = B \/ A = ( B u. { C } ) ) ) |
| 9 | 1 8 | bitri | |- ( ( B C_ A /\ A C_ ( B u. { C } ) ) <-> ( A = B \/ A = ( B u. { C } ) ) ) |