This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of WhiteheadRussell p. 121. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 30-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.72 | |- ( ( ph -> ps ) <-> ( ps <-> ( ph \/ ps ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | |- ( ps -> ( ph \/ ps ) ) |
|
| 2 | pm2.621 | |- ( ( ph -> ps ) -> ( ( ph \/ ps ) -> ps ) ) |
|
| 3 | 1 2 | impbid2 | |- ( ( ph -> ps ) -> ( ps <-> ( ph \/ ps ) ) ) |
| 4 | orc | |- ( ph -> ( ph \/ ps ) ) |
|
| 5 | biimpr | |- ( ( ps <-> ( ph \/ ps ) ) -> ( ( ph \/ ps ) -> ps ) ) |
|
| 6 | 4 5 | syl5 | |- ( ( ps <-> ( ph \/ ps ) ) -> ( ph -> ps ) ) |
| 7 | 3 6 | impbii | |- ( ( ph -> ps ) <-> ( ps <-> ( ph \/ ps ) ) ) |