This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commuting elements of a semiring: ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) (generalization of binom ). (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | |- S = ( Base ` R ) |
|
| srgbinom.m | |- .X. = ( .r ` R ) |
||
| srgbinom.t | |- .x. = ( .g ` R ) |
||
| srgbinom.a | |- .+ = ( +g ` R ) |
||
| srgbinom.g | |- G = ( mulGrp ` R ) |
||
| srgbinom.e | |- .^ = ( .g ` G ) |
||
| Assertion | srgbinom | |- ( ( ( R e. SRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | |- S = ( Base ` R ) |
|
| 2 | srgbinom.m | |- .X. = ( .r ` R ) |
|
| 3 | srgbinom.t | |- .x. = ( .g ` R ) |
|
| 4 | srgbinom.a | |- .+ = ( +g ` R ) |
|
| 5 | srgbinom.g | |- G = ( mulGrp ` R ) |
|
| 6 | srgbinom.e | |- .^ = ( .g ` G ) |
|
| 7 | oveq1 | |- ( x = 0 -> ( x .^ ( A .+ B ) ) = ( 0 .^ ( A .+ B ) ) ) |
|
| 8 | oveq2 | |- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
|
| 9 | oveq1 | |- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
|
| 10 | oveq1 | |- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
|
| 11 | 10 | oveq1d | |- ( x = 0 -> ( ( x - k ) .^ A ) = ( ( 0 - k ) .^ A ) ) |
| 12 | 11 | oveq1d | |- ( x = 0 -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 13 | 9 12 | oveq12d | |- ( x = 0 -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 14 | 8 13 | mpteq12dv | |- ( x = 0 -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 15 | 14 | oveq2d | |- ( x = 0 -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 16 | 7 15 | eqeq12d | |- ( x = 0 -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 17 | 16 | imbi2d | |- ( x = 0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 18 | oveq1 | |- ( x = n -> ( x .^ ( A .+ B ) ) = ( n .^ ( A .+ B ) ) ) |
|
| 19 | oveq2 | |- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
|
| 20 | oveq1 | |- ( x = n -> ( x _C k ) = ( n _C k ) ) |
|
| 21 | oveq1 | |- ( x = n -> ( x - k ) = ( n - k ) ) |
|
| 22 | 21 | oveq1d | |- ( x = n -> ( ( x - k ) .^ A ) = ( ( n - k ) .^ A ) ) |
| 23 | 22 | oveq1d | |- ( x = n -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 24 | 20 23 | oveq12d | |- ( x = n -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 25 | 19 24 | mpteq12dv | |- ( x = n -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 26 | 25 | oveq2d | |- ( x = n -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 27 | 18 26 | eqeq12d | |- ( x = n -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 28 | 27 | imbi2d | |- ( x = n -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 29 | oveq1 | |- ( x = ( n + 1 ) -> ( x .^ ( A .+ B ) ) = ( ( n + 1 ) .^ ( A .+ B ) ) ) |
|
| 30 | oveq2 | |- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
|
| 31 | oveq1 | |- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
|
| 32 | oveq1 | |- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
|
| 33 | 32 | oveq1d | |- ( x = ( n + 1 ) -> ( ( x - k ) .^ A ) = ( ( ( n + 1 ) - k ) .^ A ) ) |
| 34 | 33 | oveq1d | |- ( x = ( n + 1 ) -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 35 | 31 34 | oveq12d | |- ( x = ( n + 1 ) -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 36 | 30 35 | mpteq12dv | |- ( x = ( n + 1 ) -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 37 | 36 | oveq2d | |- ( x = ( n + 1 ) -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 38 | 29 37 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 39 | 38 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 40 | oveq1 | |- ( x = N -> ( x .^ ( A .+ B ) ) = ( N .^ ( A .+ B ) ) ) |
|
| 41 | oveq2 | |- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
|
| 42 | oveq1 | |- ( x = N -> ( x _C k ) = ( N _C k ) ) |
|
| 43 | oveq1 | |- ( x = N -> ( x - k ) = ( N - k ) ) |
|
| 44 | 43 | oveq1d | |- ( x = N -> ( ( x - k ) .^ A ) = ( ( N - k ) .^ A ) ) |
| 45 | 44 | oveq1d | |- ( x = N -> ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) = ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) |
| 46 | 42 45 | oveq12d | |- ( x = N -> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) = ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) |
| 47 | 41 46 | mpteq12dv | |- ( x = N -> ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 48 | 47 | oveq2d | |- ( x = N -> ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 49 | 40 48 | eqeq12d | |- ( x = N -> ( ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) <-> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 50 | 49 | imbi2d | |- ( x = N -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( x .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... x ) |-> ( ( x _C k ) .x. ( ( ( x - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) <-> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 51 | simpr1 | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. S ) |
|
| 52 | 5 1 | mgpbas | |- S = ( Base ` G ) |
| 53 | 51 52 | eleqtrdi | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> A e. ( Base ` G ) ) |
| 54 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 55 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 56 | 54 55 6 | mulg0 | |- ( A e. ( Base ` G ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
| 57 | 53 56 | syl | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ A ) = ( 0g ` G ) ) |
| 58 | simpr2 | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. S ) |
|
| 59 | 58 52 | eleqtrdi | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> B e. ( Base ` G ) ) |
| 60 | 54 55 6 | mulg0 | |- ( B e. ( Base ` G ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
| 61 | 59 60 | syl | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ B ) = ( 0g ` G ) ) |
| 62 | 57 61 | oveq12d | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 0 .^ A ) .X. ( 0 .^ B ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
| 63 | 62 | oveq2d | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
| 64 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 65 | 1 64 | srgidcl | |- ( R e. SRing -> ( 1r ` R ) e. S ) |
| 66 | 65 | ancli | |- ( R e. SRing -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
| 67 | 66 | adantr | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R e. SRing /\ ( 1r ` R ) e. S ) ) |
| 68 | 1 2 64 | srglidm | |- ( ( R e. SRing /\ ( 1r ` R ) e. S ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 69 | 67 68 | syl | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 70 | 69 | oveq2d | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( 1r ` R ) ) ) |
| 71 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 72 | 71 64 | srgidcl | |- ( R e. SRing -> ( 1r ` R ) e. ( Base ` R ) ) |
| 73 | 71 3 | mulg1 | |- ( ( 1r ` R ) e. ( Base ` R ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 74 | 72 73 | syl | |- ( R e. SRing -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 75 | 74 | adantr | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
| 76 | 70 75 | eqtrd | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) ) |
| 77 | 5 64 | ringidval | |- ( 1r ` R ) = ( 0g ` G ) |
| 78 | id | |- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1r ` R ) = ( 0g ` G ) ) |
|
| 79 | 78 78 | oveq12d | |- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1r ` R ) .X. ( 1r ` R ) ) = ( ( 0g ` G ) .X. ( 0g ` G ) ) ) |
| 80 | 79 | oveq2d | |- ( ( 1r ` R ) = ( 0g ` G ) -> ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) ) |
| 81 | 80 78 | eqeq12d | |- ( ( 1r ` R ) = ( 0g ` G ) -> ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) ) |
| 82 | 77 81 | ax-mp | |- ( ( 1 .x. ( ( 1r ` R ) .X. ( 1r ` R ) ) ) = ( 1r ` R ) <-> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 83 | 76 82 | sylib | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0g ` G ) .X. ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 84 | 63 83 | eqtrd | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) = ( 0g ` G ) ) |
| 85 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 86 | 85 | a1i | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 ... 0 ) = { 0 } ) |
| 87 | 86 | mpteq1d | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) = ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) |
| 88 | 87 | oveq2d | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 89 | srgmnd | |- ( R e. SRing -> R e. Mnd ) |
|
| 90 | 89 | adantr | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> R e. Mnd ) |
| 91 | c0ex | |- 0 e. _V |
|
| 92 | 91 | a1i | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> 0 e. _V ) |
| 93 | 77 65 | eqeltrrid | |- ( R e. SRing -> ( 0g ` G ) e. S ) |
| 94 | 93 | adantr | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0g ` G ) e. S ) |
| 95 | 84 94 | eqeltrd | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) |
| 96 | oveq2 | |- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
|
| 97 | 0nn0 | |- 0 e. NN0 |
|
| 98 | bcn0 | |- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
|
| 99 | 97 98 | ax-mp | |- ( 0 _C 0 ) = 1 |
| 100 | 96 99 | eqtrdi | |- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 101 | oveq2 | |- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
|
| 102 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 103 | 101 102 | eqtrdi | |- ( k = 0 -> ( 0 - k ) = 0 ) |
| 104 | 103 | oveq1d | |- ( k = 0 -> ( ( 0 - k ) .^ A ) = ( 0 .^ A ) ) |
| 105 | oveq1 | |- ( k = 0 -> ( k .^ B ) = ( 0 .^ B ) ) |
|
| 106 | 104 105 | oveq12d | |- ( k = 0 -> ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) = ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) |
| 107 | 100 106 | oveq12d | |- ( k = 0 -> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 108 | 1 107 | gsumsn | |- ( ( R e. Mnd /\ 0 e. _V /\ ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) e. S ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 109 | 90 92 95 108 | syl3anc | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. { 0 } |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 110 | 88 109 | eqtrd | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) = ( 1 .x. ( ( 0 .^ A ) .X. ( 0 .^ B ) ) ) ) |
| 111 | 1 4 | mndcl | |- ( ( R e. Mnd /\ A e. S /\ B e. S ) -> ( A .+ B ) e. S ) |
| 112 | 90 51 58 111 | syl3anc | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. S ) |
| 113 | 112 52 | eleqtrdi | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( A .+ B ) e. ( Base ` G ) ) |
| 114 | 54 55 6 | mulg0 | |- ( ( A .+ B ) e. ( Base ` G ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
| 115 | 113 114 | syl | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( 0g ` G ) ) |
| 116 | 84 110 115 | 3eqtr4rd | |- ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( 0 .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... 0 ) |-> ( ( 0 _C k ) .x. ( ( ( 0 - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 117 | simprl | |- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> R e. SRing ) |
|
| 118 | 51 | adantl | |- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> A e. S ) |
| 119 | 58 | adantl | |- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> B e. S ) |
| 120 | simprr3 | |- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> ( A .X. B ) = ( B .X. A ) ) |
|
| 121 | simpl | |- ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) -> n e. NN0 ) |
|
| 122 | id | |- ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
|
| 123 | 1 2 3 4 5 6 117 118 119 120 121 122 | srgbinomlem | |- ( ( ( n e. NN0 /\ ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) ) /\ ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 124 | 123 | exp31 | |- ( n e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 125 | 124 | a2d | |- ( n e. NN0 -> ( ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( n .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... n ) |-> ( ( n _C k ) .x. ( ( ( n - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( ( n + 1 ) .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... ( n + 1 ) ) |-> ( ( ( n + 1 ) _C k ) .x. ( ( ( ( n + 1 ) - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 126 | 17 28 39 50 116 125 | nn0ind | |- ( N e. NN0 -> ( ( R e. SRing /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 127 | 126 | expd | |- ( N e. NN0 -> ( R e. SRing -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) ) |
| 128 | 127 | impcom | |- ( ( R e. SRing /\ N e. NN0 ) -> ( ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) ) |
| 129 | 128 | imp | |- ( ( ( R e. SRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |