This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem for commutative semirings. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srgbinom.s | |- S = ( Base ` R ) |
|
| srgbinom.m | |- .X. = ( .r ` R ) |
||
| srgbinom.t | |- .x. = ( .g ` R ) |
||
| srgbinom.a | |- .+ = ( +g ` R ) |
||
| srgbinom.g | |- G = ( mulGrp ` R ) |
||
| srgbinom.e | |- .^ = ( .g ` G ) |
||
| Assertion | csrgbinom | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgbinom.s | |- S = ( Base ` R ) |
|
| 2 | srgbinom.m | |- .X. = ( .r ` R ) |
|
| 3 | srgbinom.t | |- .x. = ( .g ` R ) |
|
| 4 | srgbinom.a | |- .+ = ( +g ` R ) |
|
| 5 | srgbinom.g | |- G = ( mulGrp ` R ) |
|
| 6 | srgbinom.e | |- .^ = ( .g ` G ) |
|
| 7 | 3simpb | |- ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) -> ( R e. SRing /\ N e. NN0 ) ) |
|
| 8 | 7 | adantr | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( R e. SRing /\ N e. NN0 ) ) |
| 9 | simprl | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> A e. S ) |
|
| 10 | simprr | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> B e. S ) |
|
| 11 | simpl2 | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> G e. CMnd ) |
|
| 12 | 5 1 | mgpbas | |- S = ( Base ` G ) |
| 13 | 5 2 | mgpplusg | |- .X. = ( +g ` G ) |
| 14 | 12 13 | cmncom | |- ( ( G e. CMnd /\ A e. S /\ B e. S ) -> ( A .X. B ) = ( B .X. A ) ) |
| 15 | 11 9 10 14 | syl3anc | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( A .X. B ) = ( B .X. A ) ) |
| 16 | 1 2 3 4 5 6 | srgbinom | |- ( ( ( R e. SRing /\ N e. NN0 ) /\ ( A e. S /\ B e. S /\ ( A .X. B ) = ( B .X. A ) ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |
| 17 | 8 9 10 15 16 | syl13anc | |- ( ( ( R e. SRing /\ G e. CMnd /\ N e. NN0 ) /\ ( A e. S /\ B e. S ) ) -> ( N .^ ( A .+ B ) ) = ( R gsum ( k e. ( 0 ... N ) |-> ( ( N _C k ) .x. ( ( ( N - k ) .^ A ) .X. ( k .^ B ) ) ) ) ) ) |