This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of the singleton of an element of a subspace is included in the subspace. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansnss | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shel | |- ( ( A e. SH /\ B e. A ) -> B e. ~H ) |
|
| 2 | elspansn | |- ( B e. ~H -> ( x e. ( span ` { B } ) <-> E. y e. CC x = ( y .h B ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. SH /\ B e. A ) -> ( x e. ( span ` { B } ) <-> E. y e. CC x = ( y .h B ) ) ) |
| 4 | shmulcl | |- ( ( A e. SH /\ y e. CC /\ B e. A ) -> ( y .h B ) e. A ) |
|
| 5 | eleq1a | |- ( ( y .h B ) e. A -> ( x = ( y .h B ) -> x e. A ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. SH /\ y e. CC /\ B e. A ) -> ( x = ( y .h B ) -> x e. A ) ) |
| 7 | 6 | 3exp | |- ( A e. SH -> ( y e. CC -> ( B e. A -> ( x = ( y .h B ) -> x e. A ) ) ) ) |
| 8 | 7 | com23 | |- ( A e. SH -> ( B e. A -> ( y e. CC -> ( x = ( y .h B ) -> x e. A ) ) ) ) |
| 9 | 8 | imp | |- ( ( A e. SH /\ B e. A ) -> ( y e. CC -> ( x = ( y .h B ) -> x e. A ) ) ) |
| 10 | 9 | rexlimdv | |- ( ( A e. SH /\ B e. A ) -> ( E. y e. CC x = ( y .h B ) -> x e. A ) ) |
| 11 | 3 10 | sylbid | |- ( ( A e. SH /\ B e. A ) -> ( x e. ( span ` { B } ) -> x e. A ) ) |
| 12 | 11 | ssrdv | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |