This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation that implies equality of spans. (Contributed by NM, 6-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansneleq | |- ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elspansn | |- ( B e. ~H -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
|
| 2 | 1 | adantr | |- ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) <-> E. x e. CC A = ( x .h B ) ) ) |
| 3 | sneq | |- ( A = ( x .h B ) -> { A } = { ( x .h B ) } ) |
|
| 4 | 3 | fveq2d | |- ( A = ( x .h B ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) |
| 5 | 4 | ad2antll | |- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { ( x .h B ) } ) ) |
| 6 | oveq1 | |- ( x = 0 -> ( x .h B ) = ( 0 .h B ) ) |
|
| 7 | ax-hvmul0 | |- ( B e. ~H -> ( 0 .h B ) = 0h ) |
|
| 8 | 6 7 | sylan9eqr | |- ( ( B e. ~H /\ x = 0 ) -> ( x .h B ) = 0h ) |
| 9 | 8 | ex | |- ( B e. ~H -> ( x = 0 -> ( x .h B ) = 0h ) ) |
| 10 | eqeq1 | |- ( A = ( x .h B ) -> ( A = 0h <-> ( x .h B ) = 0h ) ) |
|
| 11 | 10 | biimprd | |- ( A = ( x .h B ) -> ( ( x .h B ) = 0h -> A = 0h ) ) |
| 12 | 9 11 | sylan9 | |- ( ( B e. ~H /\ A = ( x .h B ) ) -> ( x = 0 -> A = 0h ) ) |
| 13 | 12 | necon3d | |- ( ( B e. ~H /\ A = ( x .h B ) ) -> ( A =/= 0h -> x =/= 0 ) ) |
| 14 | 13 | ex | |- ( B e. ~H -> ( A = ( x .h B ) -> ( A =/= 0h -> x =/= 0 ) ) ) |
| 15 | 14 | com23 | |- ( B e. ~H -> ( A =/= 0h -> ( A = ( x .h B ) -> x =/= 0 ) ) ) |
| 16 | 15 | impd | |- ( B e. ~H -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) |
| 17 | 16 | adantr | |- ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> x =/= 0 ) ) |
| 18 | spansncol | |- ( ( B e. ~H /\ x e. CC /\ x =/= 0 ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) |
|
| 19 | 18 | 3expia | |- ( ( B e. ~H /\ x e. CC ) -> ( x =/= 0 -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) |
| 20 | 17 19 | syld | |- ( ( B e. ~H /\ x e. CC ) -> ( ( A =/= 0h /\ A = ( x .h B ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) |
| 21 | 20 | exp4b | |- ( B e. ~H -> ( x e. CC -> ( A =/= 0h -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) |
| 22 | 21 | com23 | |- ( B e. ~H -> ( A =/= 0h -> ( x e. CC -> ( A = ( x .h B ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) ) ) ) |
| 23 | 22 | imp43 | |- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { ( x .h B ) } ) = ( span ` { B } ) ) |
| 24 | 5 23 | eqtrd | |- ( ( ( B e. ~H /\ A =/= 0h ) /\ ( x e. CC /\ A = ( x .h B ) ) ) -> ( span ` { A } ) = ( span ` { B } ) ) |
| 25 | 24 | rexlimdvaa | |- ( ( B e. ~H /\ A =/= 0h ) -> ( E. x e. CC A = ( x .h B ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |
| 26 | 2 25 | sylbid | |- ( ( B e. ~H /\ A =/= 0h ) -> ( A e. ( span ` { B } ) -> ( span ` { A } ) = ( span ` { B } ) ) ) |