This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spansncv | |- ( ( A e. CH /\ B e. CH /\ C e. ~H ) -> ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psseq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A C. B <-> if ( A e. CH , A , ~H ) C. B ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. CH , A , ~H ) -> ( A vH ( span ` { C } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) |
|
| 3 | 2 | sseq2d | |- ( A = if ( A e. CH , A , ~H ) -> ( B C_ ( A vH ( span ` { C } ) ) <-> B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) |
| 4 | 1 3 | anbi12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) <-> ( if ( A e. CH , A , ~H ) C. B /\ B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) ) |
| 5 | 2 | eqeq2d | |- ( A = if ( A e. CH , A , ~H ) -> ( B = ( A vH ( span ` { C } ) ) <-> B = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) |
| 6 | 4 5 | imbi12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) <-> ( ( if ( A e. CH , A , ~H ) C. B /\ B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) -> B = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) ) |
| 7 | psseq2 | |- ( B = if ( B e. CH , B , ~H ) -> ( if ( A e. CH , A , ~H ) C. B <-> if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) ) ) |
|
| 8 | sseq1 | |- ( B = if ( B e. CH , B , ~H ) -> ( B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) <-> if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) |
|
| 9 | 7 8 | anbi12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( if ( A e. CH , A , ~H ) C. B /\ B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) <-> ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) ) |
| 10 | eqeq1 | |- ( B = if ( B e. CH , B , ~H ) -> ( B = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) <-> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) |
|
| 11 | 9 10 | imbi12d | |- ( B = if ( B e. CH , B , ~H ) -> ( ( ( if ( A e. CH , A , ~H ) C. B /\ B C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) -> B = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) <-> ( ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) -> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) ) ) |
| 12 | sneq | |- ( C = if ( C e. ~H , C , 0h ) -> { C } = { if ( C e. ~H , C , 0h ) } ) |
|
| 13 | 12 | fveq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( span ` { C } ) = ( span ` { if ( C e. ~H , C , 0h ) } ) ) |
| 14 | 13 | oveq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) |
| 15 | 14 | sseq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) <-> if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) ) |
| 16 | 15 | anbi2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) <-> ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) ) ) |
| 17 | 14 | eqeq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) <-> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) ) |
| 18 | 16 17 | imbi12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) -> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { C } ) ) ) <-> ( ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) -> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) ) ) |
| 19 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 20 | ifchhv | |- if ( B e. CH , B , ~H ) e. CH |
|
| 21 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 22 | 19 20 21 | spansncvi | |- ( ( if ( A e. CH , A , ~H ) C. if ( B e. CH , B , ~H ) /\ if ( B e. CH , B , ~H ) C_ ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) -> if ( B e. CH , B , ~H ) = ( if ( A e. CH , A , ~H ) vH ( span ` { if ( C e. ~H , C , 0h ) } ) ) ) |
| 23 | 6 11 18 22 | dedth3h | |- ( ( A e. CH /\ B e. CH /\ C e. ~H ) -> ( ( A C. B /\ B C_ ( A vH ( span ` { C } ) ) ) -> B = ( A vH ( span ` { C } ) ) ) ) |