This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The doubling function D is an endofunction on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex2dbas.b | |- B = ( Base ` M ) |
||
| smndex2dbas.0 | |- .0. = ( 0g ` M ) |
||
| smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
||
| Assertion | smndex2dbas | |- D e. B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex2dbas.b | |- B = ( Base ` M ) |
|
| 3 | smndex2dbas.0 | |- .0. = ( 0g ` M ) |
|
| 4 | smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
|
| 5 | 2nn0 | |- 2 e. NN0 |
|
| 6 | 5 | a1i | |- ( x e. NN0 -> 2 e. NN0 ) |
| 7 | id | |- ( x e. NN0 -> x e. NN0 ) |
|
| 8 | 6 7 | nn0mulcld | |- ( x e. NN0 -> ( 2 x. x ) e. NN0 ) |
| 9 | 4 8 | fmpti | |- D : NN0 --> NN0 |
| 10 | nn0ex | |- NN0 e. _V |
|
| 11 | 10 | mptex | |- ( x e. NN0 |-> ( 2 x. x ) ) e. _V |
| 12 | 4 11 | eqeltri | |- D e. _V |
| 13 | 1 2 | elefmndbas2 | |- ( D e. _V -> ( D e. B <-> D : NN0 --> NN0 ) ) |
| 14 | 12 13 | ax-mp | |- ( D e. B <-> D : NN0 --> NN0 ) |
| 15 | 9 14 | mpbir | |- D e. B |