This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The halving functions H are endofunctions on NN0 . (Contributed by AV, 18-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex2dbas.b | |- B = ( Base ` M ) |
||
| smndex2dbas.0 | |- .0. = ( 0g ` M ) |
||
| smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
||
| smndex2hbas.n | |- N e. NN0 |
||
| smndex2hbas.h | |- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
||
| Assertion | smndex2hbas | |- H e. B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex2dbas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex2dbas.b | |- B = ( Base ` M ) |
|
| 3 | smndex2dbas.0 | |- .0. = ( 0g ` M ) |
|
| 4 | smndex2dbas.d | |- D = ( x e. NN0 |-> ( 2 x. x ) ) |
|
| 5 | smndex2hbas.n | |- N e. NN0 |
|
| 6 | smndex2hbas.h | |- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
|
| 7 | nn0ehalf | |- ( ( x e. NN0 /\ 2 || x ) -> ( x / 2 ) e. NN0 ) |
|
| 8 | 5 | a1i | |- ( ( x e. NN0 /\ -. 2 || x ) -> N e. NN0 ) |
| 9 | 7 8 | ifclda | |- ( x e. NN0 -> if ( 2 || x , ( x / 2 ) , N ) e. NN0 ) |
| 10 | 6 9 | fmpti | |- H : NN0 --> NN0 |
| 11 | nn0ex | |- NN0 e. _V |
|
| 12 | 11 | mptex | |- ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) e. _V |
| 13 | 6 12 | eqeltri | |- H e. _V |
| 14 | 1 2 | elefmndbas2 | |- ( H e. _V -> ( H e. B <-> H : NN0 --> NN0 ) ) |
| 15 | 13 14 | ax-mp | |- ( H e. B <-> H : NN0 --> NN0 ) |
| 16 | 10 15 | mpbir | |- H e. B |