This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function restricted to a set A is the identity element of the monoid of endofunctions on A . (Contributed by AV, 25-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ielefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| Assertion | efmndid | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ielefmnd.g | |- G = ( EndoFMnd ` A ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | 1 | ielefmnd | |- ( A e. V -> ( _I |` A ) e. ( Base ` G ) ) |
| 6 | 1 2 4 | efmndov | |- ( ( ( _I |` A ) e. ( Base ` G ) /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
| 7 | 5 6 | sylan | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = ( ( _I |` A ) o. f ) ) |
| 8 | 1 2 | efmndbasf | |- ( f e. ( Base ` G ) -> f : A --> A ) |
| 9 | 8 | adantl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> f : A --> A ) |
| 10 | fcoi2 | |- ( f : A --> A -> ( ( _I |` A ) o. f ) = f ) |
|
| 11 | 9 10 | syl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) o. f ) = f ) |
| 12 | 7 11 | eqtrd | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( ( _I |` A ) ( +g ` G ) f ) = f ) |
| 13 | 5 | anim1ci | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) ) |
| 14 | 1 2 4 | efmndov | |- ( ( f e. ( Base ` G ) /\ ( _I |` A ) e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
| 15 | 13 14 | syl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = ( f o. ( _I |` A ) ) ) |
| 16 | fcoi1 | |- ( f : A --> A -> ( f o. ( _I |` A ) ) = f ) |
|
| 17 | 9 16 | syl | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f o. ( _I |` A ) ) = f ) |
| 18 | 15 17 | eqtrd | |- ( ( A e. V /\ f e. ( Base ` G ) ) -> ( f ( +g ` G ) ( _I |` A ) ) = f ) |
| 19 | 2 3 4 5 12 18 | ismgmid2 | |- ( A e. V -> ( _I |` A ) = ( 0g ` G ) ) |