This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of Apostol p. 28. (Contributed by NM, 31-Jul-2004) (Proof shortened by Mario Carneiro, 18-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zneo | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 2 x. A ) =/= ( ( 2 x. B ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnz | |- -. ( 1 / 2 ) e. ZZ |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 4 | 3 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> A e. CC ) |
| 5 | mulcl | |- ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) |
|
| 6 | 2 4 5 | sylancr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 2 x. A ) e. CC ) |
| 7 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 8 | 7 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) |
| 9 | mulcl | |- ( ( 2 e. CC /\ B e. CC ) -> ( 2 x. B ) e. CC ) |
|
| 10 | 2 8 9 | sylancr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 2 x. B ) e. CC ) |
| 11 | 1cnd | |- ( ( A e. ZZ /\ B e. ZZ ) -> 1 e. CC ) |
|
| 12 | 6 10 11 | subaddd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( 2 x. A ) - ( 2 x. B ) ) = 1 <-> ( ( 2 x. B ) + 1 ) = ( 2 x. A ) ) ) |
| 13 | 2 | a1i | |- ( ( A e. ZZ /\ B e. ZZ ) -> 2 e. CC ) |
| 14 | 13 4 8 | subdid | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 2 x. ( A - B ) ) = ( ( 2 x. A ) - ( 2 x. B ) ) ) |
| 15 | 14 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 2 x. ( A - B ) ) / 2 ) = ( ( ( 2 x. A ) - ( 2 x. B ) ) / 2 ) ) |
| 16 | zsubcl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. ZZ ) |
|
| 17 | zcn | |- ( ( A - B ) e. ZZ -> ( A - B ) e. CC ) |
|
| 18 | 16 17 | syl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A - B ) e. CC ) |
| 19 | 2ne0 | |- 2 =/= 0 |
|
| 20 | 19 | a1i | |- ( ( A e. ZZ /\ B e. ZZ ) -> 2 =/= 0 ) |
| 21 | 18 13 20 | divcan3d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 2 x. ( A - B ) ) / 2 ) = ( A - B ) ) |
| 22 | 15 21 | eqtr3d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( 2 x. A ) - ( 2 x. B ) ) / 2 ) = ( A - B ) ) |
| 23 | 22 16 | eqeltrd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( 2 x. A ) - ( 2 x. B ) ) / 2 ) e. ZZ ) |
| 24 | oveq1 | |- ( ( ( 2 x. A ) - ( 2 x. B ) ) = 1 -> ( ( ( 2 x. A ) - ( 2 x. B ) ) / 2 ) = ( 1 / 2 ) ) |
|
| 25 | 24 | eleq1d | |- ( ( ( 2 x. A ) - ( 2 x. B ) ) = 1 -> ( ( ( ( 2 x. A ) - ( 2 x. B ) ) / 2 ) e. ZZ <-> ( 1 / 2 ) e. ZZ ) ) |
| 26 | 23 25 | syl5ibcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( 2 x. A ) - ( 2 x. B ) ) = 1 -> ( 1 / 2 ) e. ZZ ) ) |
| 27 | 12 26 | sylbird | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( 2 x. B ) + 1 ) = ( 2 x. A ) -> ( 1 / 2 ) e. ZZ ) ) |
| 28 | 27 | necon3bd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( -. ( 1 / 2 ) e. ZZ -> ( ( 2 x. B ) + 1 ) =/= ( 2 x. A ) ) ) |
| 29 | 1 28 | mpi | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( 2 x. B ) + 1 ) =/= ( 2 x. A ) ) |
| 30 | 29 | necomd | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( 2 x. A ) =/= ( ( 2 x. B ) + 1 ) ) |