This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issgrp.b | |- B = ( Base ` M ) |
|
| issgrp.o | |- .o. = ( +g ` M ) |
||
| Assertion | issgrp | |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issgrp.b | |- B = ( Base ` M ) |
|
| 2 | issgrp.o | |- .o. = ( +g ` M ) |
|
| 3 | fvexd | |- ( g = M -> ( Base ` g ) e. _V ) |
|
| 4 | fveq2 | |- ( g = M -> ( Base ` g ) = ( Base ` M ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( g = M -> ( Base ` g ) = B ) |
| 6 | fvexd | |- ( ( g = M /\ b = B ) -> ( +g ` g ) e. _V ) |
|
| 7 | fveq2 | |- ( g = M -> ( +g ` g ) = ( +g ` M ) ) |
|
| 8 | 7 | adantr | |- ( ( g = M /\ b = B ) -> ( +g ` g ) = ( +g ` M ) ) |
| 9 | 8 2 | eqtr4di | |- ( ( g = M /\ b = B ) -> ( +g ` g ) = .o. ) |
| 10 | simplr | |- ( ( ( g = M /\ b = B ) /\ o = .o. ) -> b = B ) |
|
| 11 | id | |- ( o = .o. -> o = .o. ) |
|
| 12 | oveq | |- ( o = .o. -> ( x o y ) = ( x .o. y ) ) |
|
| 13 | eqidd | |- ( o = .o. -> z = z ) |
|
| 14 | 11 12 13 | oveq123d | |- ( o = .o. -> ( ( x o y ) o z ) = ( ( x .o. y ) .o. z ) ) |
| 15 | eqidd | |- ( o = .o. -> x = x ) |
|
| 16 | oveq | |- ( o = .o. -> ( y o z ) = ( y .o. z ) ) |
|
| 17 | 11 15 16 | oveq123d | |- ( o = .o. -> ( x o ( y o z ) ) = ( x .o. ( y .o. z ) ) ) |
| 18 | 14 17 | eqeq12d | |- ( o = .o. -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 19 | 18 | adantl | |- ( ( ( g = M /\ b = B ) /\ o = .o. ) -> ( ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 20 | 10 19 | raleqbidv | |- ( ( ( g = M /\ b = B ) /\ o = .o. ) -> ( A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 21 | 10 20 | raleqbidv | |- ( ( ( g = M /\ b = B ) /\ o = .o. ) -> ( A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 22 | 10 21 | raleqbidv | |- ( ( ( g = M /\ b = B ) /\ o = .o. ) -> ( A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 23 | 6 9 22 | sbcied2 | |- ( ( g = M /\ b = B ) -> ( [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 24 | 3 5 23 | sbcied2 | |- ( g = M -> ( [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) <-> A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |
| 25 | df-sgrp | |- Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } |
|
| 26 | 24 25 | elrab2 | |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. z ) = ( x .o. ( y .o. z ) ) ) ) |