This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set B of the constructed monoid S is not a submonoid of the monoid M of endofunctions on set NN0 , although M e. Mnd and S e. Mnd and B C_ ( BaseM ) hold. (Contributed by AV, 17-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | nsmndex1 | |- B e/ ( SubMnd ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | 1 2 3 4 5 6 | smndex1n0mnd | |- ( 0g ` M ) e/ B |
| 8 | 7 | neli | |- -. ( 0g ` M ) e. B |
| 9 | 8 | intnan | |- -. ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) |
| 10 | 9 | intnan | |- -. ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) |
| 11 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 12 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 13 | 11 12 | issubmndb | |- ( B e. ( SubMnd ` M ) <-> ( ( M e. Mnd /\ ( M |`s B ) e. Mnd ) /\ ( B C_ ( Base ` M ) /\ ( 0g ` M ) e. B ) ) ) |
| 14 | 10 13 | mtbir | |- -. B e. ( SubMnd ` M ) |
| 15 | 14 | nelir | |- B e/ ( SubMnd ` M ) |