This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq4sgn | |- ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 /\ 0 < ( cos ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re | |- 3 e. RR |
|
| 2 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 3 | 1 2 | remulcli | |- ( 3 x. ( _pi / 2 ) ) e. RR |
| 4 | 3 | rexri | |- ( 3 x. ( _pi / 2 ) ) e. RR* |
| 5 | 2re | |- 2 e. RR |
|
| 6 | pire | |- _pi e. RR |
|
| 7 | 5 6 | remulcli | |- ( 2 x. _pi ) e. RR |
| 8 | 7 | rexri | |- ( 2 x. _pi ) e. RR* |
| 9 | elioo2 | |- ( ( ( 3 x. ( _pi / 2 ) ) e. RR* /\ ( 2 x. _pi ) e. RR* ) -> ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) ) ) |
|
| 10 | 4 8 9 | mp2an | |- ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) <-> ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) ) |
| 11 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 12 | 11 | oveq1i | |- ( 3 x. ( _pi / 2 ) ) = ( ( 2 + 1 ) x. ( _pi / 2 ) ) |
| 13 | 2cn | |- 2 e. CC |
|
| 14 | ax-1cn | |- 1 e. CC |
|
| 15 | 2 | recni | |- ( _pi / 2 ) e. CC |
| 16 | 13 14 15 | adddiri | |- ( ( 2 + 1 ) x. ( _pi / 2 ) ) = ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) |
| 17 | 6 | recni | |- _pi e. CC |
| 18 | 2ne0 | |- 2 =/= 0 |
|
| 19 | 17 13 18 | divcan2i | |- ( 2 x. ( _pi / 2 ) ) = _pi |
| 20 | 15 | mullidi | |- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 21 | 19 20 | oveq12i | |- ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) = ( _pi + ( _pi / 2 ) ) |
| 22 | 12 16 21 | 3eqtrri | |- ( _pi + ( _pi / 2 ) ) = ( 3 x. ( _pi / 2 ) ) |
| 23 | 22 | breq1i | |- ( ( _pi + ( _pi / 2 ) ) < A <-> ( 3 x. ( _pi / 2 ) ) < A ) |
| 24 | ltaddsub | |- ( ( _pi e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi + ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
|
| 25 | 6 2 24 | mp3an12 | |- ( A e. RR -> ( ( _pi + ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
| 26 | 23 25 | bitr3id | |- ( A e. RR -> ( ( 3 x. ( _pi / 2 ) ) < A <-> _pi < ( A - ( _pi / 2 ) ) ) ) |
| 27 | ltsubadd | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ ( 3 x. ( _pi / 2 ) ) e. RR ) -> ( ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) <-> A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) ) ) |
|
| 28 | 2 3 27 | mp3an23 | |- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) <-> A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) ) ) |
| 29 | df-4 | |- 4 = ( 3 + 1 ) |
|
| 30 | 29 | oveq1i | |- ( 4 x. ( _pi / 2 ) ) = ( ( 3 + 1 ) x. ( _pi / 2 ) ) |
| 31 | 1 | recni | |- 3 e. CC |
| 32 | 31 14 15 | adddiri | |- ( ( 3 + 1 ) x. ( _pi / 2 ) ) = ( ( 3 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) |
| 33 | 20 | oveq2i | |- ( ( 3 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) = ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) |
| 34 | 30 32 33 | 3eqtrri | |- ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) = ( 4 x. ( _pi / 2 ) ) |
| 35 | 4cn | |- 4 e. CC |
|
| 36 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 37 | div12 | |- ( ( 4 e. CC /\ _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( 4 x. ( _pi / 2 ) ) = ( _pi x. ( 4 / 2 ) ) ) |
|
| 38 | 35 17 36 37 | mp3an | |- ( 4 x. ( _pi / 2 ) ) = ( _pi x. ( 4 / 2 ) ) |
| 39 | 4div2e2 | |- ( 4 / 2 ) = 2 |
|
| 40 | 39 | oveq2i | |- ( _pi x. ( 4 / 2 ) ) = ( _pi x. 2 ) |
| 41 | 17 13 | mulcomi | |- ( _pi x. 2 ) = ( 2 x. _pi ) |
| 42 | 40 41 | eqtri | |- ( _pi x. ( 4 / 2 ) ) = ( 2 x. _pi ) |
| 43 | 38 42 | eqtri | |- ( 4 x. ( _pi / 2 ) ) = ( 2 x. _pi ) |
| 44 | 34 43 | eqtri | |- ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) = ( 2 x. _pi ) |
| 45 | 44 | breq2i | |- ( A < ( ( 3 x. ( _pi / 2 ) ) + ( _pi / 2 ) ) <-> A < ( 2 x. _pi ) ) |
| 46 | 28 45 | bitr2di | |- ( A e. RR -> ( A < ( 2 x. _pi ) <-> ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) |
| 47 | 26 46 | anbi12d | |- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) <-> ( _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) ) |
| 48 | resubcl | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A - ( _pi / 2 ) ) e. RR ) |
|
| 49 | 2 48 | mpan2 | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. RR ) |
| 50 | 6 | rexri | |- _pi e. RR* |
| 51 | elioo2 | |- ( ( _pi e. RR* /\ ( 3 x. ( _pi / 2 ) ) e. RR* ) -> ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) ) |
|
| 52 | 50 4 51 | mp2an | |- ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) ) |
| 53 | sincosq3sgn | |- ( ( A - ( _pi / 2 ) ) e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
|
| 54 | 52 53 | sylbir | |- ( ( ( A - ( _pi / 2 ) ) e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 55 | 49 54 | syl3an1 | |- ( ( A e. RR /\ _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 56 | 55 | 3expib | |- ( A e. RR -> ( ( _pi < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 57 | 47 56 | sylbid | |- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 58 | 49 | resincld | |- ( A e. RR -> ( sin ` ( A - ( _pi / 2 ) ) ) e. RR ) |
| 59 | 58 | lt0neg1d | |- ( A e. RR -> ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 <-> 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
| 60 | 59 | anbi1d | |- ( A e. RR -> ( ( ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) <-> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 61 | 57 60 | sylibd | |- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 62 | recn | |- ( A e. RR -> A e. CC ) |
|
| 63 | pncan3 | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
|
| 64 | 15 62 63 | sylancr | |- ( A e. RR -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
| 65 | 64 | fveq2d | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` A ) ) |
| 66 | 49 | recnd | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. CC ) |
| 67 | coshalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
|
| 68 | 66 67 | syl | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 69 | 65 68 | eqtr3d | |- ( A e. RR -> ( cos ` A ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 70 | 69 | breq2d | |- ( A e. RR -> ( 0 < ( cos ` A ) <-> 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
| 71 | 64 | fveq2d | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( sin ` A ) ) |
| 72 | sinhalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
|
| 73 | 66 72 | syl | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 74 | 71 73 | eqtr3d | |- ( A e. RR -> ( sin ` A ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 75 | 74 | breq1d | |- ( A e. RR -> ( ( sin ` A ) < 0 <-> ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 76 | 70 75 | anbi12d | |- ( A e. RR -> ( ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) <-> ( 0 < -u ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 77 | 61 76 | sylibrd | |- ( A e. RR -> ( ( ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) ) ) |
| 78 | 77 | 3impib | |- ( ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( 0 < ( cos ` A ) /\ ( sin ` A ) < 0 ) ) |
| 79 | 78 | ancomd | |- ( ( A e. RR /\ ( 3 x. ( _pi / 2 ) ) < A /\ A < ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 /\ 0 < ( cos ` A ) ) ) |
| 80 | 10 79 | sylbi | |- ( A e. ( ( 3 x. ( _pi / 2 ) ) (,) ( 2 x. _pi ) ) -> ( ( sin ` A ) < 0 /\ 0 < ( cos ` A ) ) ) |