This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq3sgn | |- ( A e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` A ) < 0 /\ ( cos ` A ) < 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pire | |- _pi e. RR |
|
| 2 | 3re | |- 3 e. RR |
|
| 3 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 4 | 2 3 | remulcli | |- ( 3 x. ( _pi / 2 ) ) e. RR |
| 5 | rexr | |- ( _pi e. RR -> _pi e. RR* ) |
|
| 6 | rexr | |- ( ( 3 x. ( _pi / 2 ) ) e. RR -> ( 3 x. ( _pi / 2 ) ) e. RR* ) |
|
| 7 | elioo2 | |- ( ( _pi e. RR* /\ ( 3 x. ( _pi / 2 ) ) e. RR* ) -> ( A e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( A e. RR /\ _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) ) ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( _pi e. RR /\ ( 3 x. ( _pi / 2 ) ) e. RR ) -> ( A e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( A e. RR /\ _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) ) ) |
| 9 | 1 4 8 | mp2an | |- ( A e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) <-> ( A e. RR /\ _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) ) |
| 10 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 11 | 10 | breq1i | |- ( ( ( _pi / 2 ) + ( _pi / 2 ) ) < A <-> _pi < A ) |
| 12 | ltaddsub | |- ( ( ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( ( _pi / 2 ) + ( _pi / 2 ) ) < A <-> ( _pi / 2 ) < ( A - ( _pi / 2 ) ) ) ) |
|
| 13 | 3 3 12 | mp3an12 | |- ( A e. RR -> ( ( ( _pi / 2 ) + ( _pi / 2 ) ) < A <-> ( _pi / 2 ) < ( A - ( _pi / 2 ) ) ) ) |
| 14 | 11 13 | bitr3id | |- ( A e. RR -> ( _pi < A <-> ( _pi / 2 ) < ( A - ( _pi / 2 ) ) ) ) |
| 15 | ltsubadd | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( ( A - ( _pi / 2 ) ) < _pi <-> A < ( _pi + ( _pi / 2 ) ) ) ) |
|
| 16 | 3 1 15 | mp3an23 | |- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < _pi <-> A < ( _pi + ( _pi / 2 ) ) ) ) |
| 17 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 18 | 17 | oveq1i | |- ( 3 x. ( _pi / 2 ) ) = ( ( 2 + 1 ) x. ( _pi / 2 ) ) |
| 19 | 2cn | |- 2 e. CC |
|
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | 3 | recni | |- ( _pi / 2 ) e. CC |
| 22 | 19 20 21 | adddiri | |- ( ( 2 + 1 ) x. ( _pi / 2 ) ) = ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) |
| 23 | 1 | recni | |- _pi e. CC |
| 24 | 2ne0 | |- 2 =/= 0 |
|
| 25 | 23 19 24 | divcan2i | |- ( 2 x. ( _pi / 2 ) ) = _pi |
| 26 | 21 | mullidi | |- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 27 | 25 26 | oveq12i | |- ( ( 2 x. ( _pi / 2 ) ) + ( 1 x. ( _pi / 2 ) ) ) = ( _pi + ( _pi / 2 ) ) |
| 28 | 18 22 27 | 3eqtrri | |- ( _pi + ( _pi / 2 ) ) = ( 3 x. ( _pi / 2 ) ) |
| 29 | 28 | breq2i | |- ( A < ( _pi + ( _pi / 2 ) ) <-> A < ( 3 x. ( _pi / 2 ) ) ) |
| 30 | 16 29 | bitr2di | |- ( A e. RR -> ( A < ( 3 x. ( _pi / 2 ) ) <-> ( A - ( _pi / 2 ) ) < _pi ) ) |
| 31 | 14 30 | anbi12d | |- ( A e. RR -> ( ( _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) <-> ( ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) ) ) |
| 32 | resubcl | |- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A - ( _pi / 2 ) ) e. RR ) |
|
| 33 | 3 32 | mpan2 | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. RR ) |
| 34 | sincosq2sgn | |- ( ( A - ( _pi / 2 ) ) e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
|
| 35 | rexr | |- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) |
|
| 36 | elioo2 | |- ( ( ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( ( A - ( _pi / 2 ) ) e. ( ( _pi / 2 ) (,) _pi ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) ) ) |
|
| 37 | 35 5 36 | syl2an | |- ( ( ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( ( A - ( _pi / 2 ) ) e. ( ( _pi / 2 ) (,) _pi ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) ) ) |
| 38 | 3 1 37 | mp2an | |- ( ( A - ( _pi / 2 ) ) e. ( ( _pi / 2 ) (,) _pi ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) ) |
| 39 | ancom | |- ( ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) <-> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
|
| 40 | 34 38 39 | 3imtr3i | |- ( ( ( A - ( _pi / 2 ) ) e. RR /\ ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) -> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
| 41 | 33 40 | syl3an1 | |- ( ( A e. RR /\ ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) -> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) ) |
| 42 | 41 | 3expib | |- ( A e. RR -> ( ( ( _pi / 2 ) < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < _pi ) -> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 43 | 31 42 | sylbid | |- ( A e. RR -> ( ( _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) -> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) ) ) |
| 44 | 33 | resincld | |- ( A e. RR -> ( sin ` ( A - ( _pi / 2 ) ) ) e. RR ) |
| 45 | 44 | lt0neg2d | |- ( A e. RR -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 46 | 45 | anbi2d | |- ( A e. RR -> ( ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( sin ` ( A - ( _pi / 2 ) ) ) ) <-> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 47 | 43 46 | sylibd | |- ( A e. RR -> ( ( _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) -> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 48 | recn | |- ( A e. RR -> A e. CC ) |
|
| 49 | pncan3 | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
|
| 50 | 21 48 49 | sylancr | |- ( A e. RR -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
| 51 | 50 | fveq2d | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( sin ` A ) ) |
| 52 | 33 | recnd | |- ( A e. RR -> ( A - ( _pi / 2 ) ) e. CC ) |
| 53 | sinhalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
|
| 54 | 52 53 | syl | |- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 55 | 51 54 | eqtr3d | |- ( A e. RR -> ( sin ` A ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
| 56 | 55 | breq1d | |- ( A e. RR -> ( ( sin ` A ) < 0 <-> ( cos ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 57 | 50 | fveq2d | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` A ) ) |
| 58 | coshalfpip | |- ( ( A - ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
|
| 59 | 52 58 | syl | |- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 60 | 57 59 | eqtr3d | |- ( A e. RR -> ( cos ` A ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
| 61 | 60 | breq1d | |- ( A e. RR -> ( ( cos ` A ) < 0 <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
| 62 | 56 61 | anbi12d | |- ( A e. RR -> ( ( ( sin ` A ) < 0 /\ ( cos ` A ) < 0 ) <-> ( ( cos ` ( A - ( _pi / 2 ) ) ) < 0 /\ -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) ) |
| 63 | 47 62 | sylibrd | |- ( A e. RR -> ( ( _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` A ) < 0 /\ ( cos ` A ) < 0 ) ) ) |
| 64 | 63 | 3impib | |- ( ( A e. RR /\ _pi < A /\ A < ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` A ) < 0 /\ ( cos ` A ) < 0 ) ) |
| 65 | 9 64 | sylbi | |- ( A e. ( _pi (,) ( 3 x. ( _pi / 2 ) ) ) -> ( ( sin ` A ) < 0 /\ ( cos ` A ) < 0 ) ) |