This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coshalfpip | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) + A ) ) = -u ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coshalfpi | |- ( cos ` ( _pi / 2 ) ) = 0 |
|
| 2 | 1 | oveq1i | |- ( ( cos ` ( _pi / 2 ) ) x. ( cos ` A ) ) = ( 0 x. ( cos ` A ) ) |
| 3 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 4 | 3 | mul02d | |- ( A e. CC -> ( 0 x. ( cos ` A ) ) = 0 ) |
| 5 | 2 4 | eqtrid | |- ( A e. CC -> ( ( cos ` ( _pi / 2 ) ) x. ( cos ` A ) ) = 0 ) |
| 6 | sinhalfpi | |- ( sin ` ( _pi / 2 ) ) = 1 |
|
| 7 | 6 | oveq1i | |- ( ( sin ` ( _pi / 2 ) ) x. ( sin ` A ) ) = ( 1 x. ( sin ` A ) ) |
| 8 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 9 | 8 | mullidd | |- ( A e. CC -> ( 1 x. ( sin ` A ) ) = ( sin ` A ) ) |
| 10 | 7 9 | eqtrid | |- ( A e. CC -> ( ( sin ` ( _pi / 2 ) ) x. ( sin ` A ) ) = ( sin ` A ) ) |
| 11 | 5 10 | oveq12d | |- ( A e. CC -> ( ( ( cos ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( sin ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) = ( 0 - ( sin ` A ) ) ) |
| 12 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 13 | 12 | recni | |- ( _pi / 2 ) e. CC |
| 14 | cosadd | |- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( cos ` ( ( _pi / 2 ) + A ) ) = ( ( ( cos ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( sin ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) |
|
| 15 | 13 14 | mpan | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) + A ) ) = ( ( ( cos ` ( _pi / 2 ) ) x. ( cos ` A ) ) - ( ( sin ` ( _pi / 2 ) ) x. ( sin ` A ) ) ) ) |
| 16 | df-neg | |- -u ( sin ` A ) = ( 0 - ( sin ` A ) ) |
|
| 17 | 16 | a1i | |- ( A e. CC -> -u ( sin ` A ) = ( 0 - ( sin ` A ) ) ) |
| 18 | 11 15 17 | 3eqtr4d | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) + A ) ) = -u ( sin ` A ) ) |