This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 5 | 3 4 | syl | |- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 6 | negicn | |- -u _i e. CC |
|
| 7 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 8 | 6 7 | mpan | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 9 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 10 | 8 9 | syl | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 11 | 5 10 | addcld | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 12 | 5 10 | subcld | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 13 | 2cn | |- 2 e. CC |
|
| 14 | 2ne0 | |- 2 =/= 0 |
|
| 15 | 13 14 | pm3.2i | |- ( 2 e. CC /\ 2 =/= 0 ) |
| 16 | divdir | |- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
|
| 17 | 15 16 | mp3an3 | |- ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 18 | 11 12 17 | syl2anc | |- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 19 | 10 5 | pncan3d | |- ( A e. CC -> ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( exp ` ( _i x. A ) ) ) |
| 20 | 19 | oveq2d | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 21 | 5 10 12 | addassd | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( exp ` ( _i x. A ) ) + ( ( exp ` ( -u _i x. A ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 22 | 5 | 2timesd | |- ( A e. CC -> ( 2 x. ( exp ` ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) + ( exp ` ( _i x. A ) ) ) ) |
| 23 | 20 21 22 | 3eqtr4d | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( 2 x. ( exp ` ( _i x. A ) ) ) ) |
| 24 | 23 | oveq1d | |- ( A e. CC -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) = ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) ) |
| 25 | divcan3 | |- ( ( ( exp ` ( _i x. A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
|
| 26 | 13 14 25 | mp3an23 | |- ( ( exp ` ( _i x. A ) ) e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
| 27 | 5 26 | syl | |- ( A e. CC -> ( ( 2 x. ( exp ` ( _i x. A ) ) ) / 2 ) = ( exp ` ( _i x. A ) ) ) |
| 28 | 24 27 | eqtr2d | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / 2 ) ) |
| 29 | cosval | |- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
|
| 30 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 31 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 32 | 30 31 | pm3.2i | |- ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) |
| 33 | div12 | |- ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) ) -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
|
| 34 | 1 32 33 | mp3an13 | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 35 | 12 34 | syl | |- ( A e. CC -> ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 36 | sinval | |- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 37 | 36 | oveq2d | |- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( _i x. ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) ) |
| 38 | divrec | |- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
|
| 39 | 13 14 38 | mp3an23 | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
| 40 | 12 39 | syl | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) ) |
| 41 | 1 | mullidi | |- ( 1 x. _i ) = _i |
| 42 | 41 | oveq1i | |- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( _i / ( 2 x. _i ) ) |
| 43 | ine0 | |- _i =/= 0 |
|
| 44 | 1 43 | dividi | |- ( _i / _i ) = 1 |
| 45 | 44 | oveq2i | |- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 / 2 ) x. 1 ) |
| 46 | ax-1cn | |- 1 e. CC |
|
| 47 | 46 13 1 1 14 43 | divmuldivi | |- ( ( 1 / 2 ) x. ( _i / _i ) ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
| 48 | 45 47 | eqtr3i | |- ( ( 1 / 2 ) x. 1 ) = ( ( 1 x. _i ) / ( 2 x. _i ) ) |
| 49 | halfcn | |- ( 1 / 2 ) e. CC |
|
| 50 | 49 | mulridi | |- ( ( 1 / 2 ) x. 1 ) = ( 1 / 2 ) |
| 51 | 48 50 | eqtr3i | |- ( ( 1 x. _i ) / ( 2 x. _i ) ) = ( 1 / 2 ) |
| 52 | 42 51 | eqtr3i | |- ( _i / ( 2 x. _i ) ) = ( 1 / 2 ) |
| 53 | 52 | oveq2i | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( 1 / 2 ) ) |
| 54 | 40 53 | eqtr4di | |- ( A e. CC -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) x. ( _i / ( 2 x. _i ) ) ) ) |
| 55 | 35 37 54 | 3eqtr4d | |- ( A e. CC -> ( _i x. ( sin ` A ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 56 | 29 55 | oveq12d | |- ( A e. CC -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) = ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) + ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 57 | 18 28 56 | 3eqtr4d | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |