This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function in terms of sine and cosine. (Contributed by NM, 14-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efmival | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulneg12 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 4 | 3 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( exp ` ( _i x. -u A ) ) ) |
| 5 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 6 | efival | |- ( -u A e. CC -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) ) |
| 8 | cosneg | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
|
| 9 | sinneg | |- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
|
| 10 | 9 | oveq2d | |- ( A e. CC -> ( _i x. ( sin ` -u A ) ) = ( _i x. -u ( sin ` A ) ) ) |
| 11 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 12 | mulneg2 | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
|
| 13 | 1 11 12 | sylancr | |- ( A e. CC -> ( _i x. -u ( sin ` A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 14 | 10 13 | eqtrd | |- ( A e. CC -> ( _i x. ( sin ` -u A ) ) = -u ( _i x. ( sin ` A ) ) ) |
| 15 | 8 14 | oveq12d | |- ( A e. CC -> ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) = ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) ) |
| 16 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 17 | mulcl | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
|
| 18 | 1 11 17 | sylancr | |- ( A e. CC -> ( _i x. ( sin ` A ) ) e. CC ) |
| 19 | 16 18 | negsubd | |- ( A e. CC -> ( ( cos ` A ) + -u ( _i x. ( sin ` A ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 20 | 15 19 | eqtrd | |- ( A e. CC -> ( ( cos ` -u A ) + ( _i x. ( sin ` -u A ) ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 21 | 7 20 | eqtrd | |- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
| 22 | 4 21 | eqtrd | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |