This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition formula for sine. Equation 14 of Gleason p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 2 | sinval | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / ( 2 · i ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / ( 2 · i ) ) ) |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | 4 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 2 ∈ ℂ ) |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | 6 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → i ∈ ℂ ) |
| 8 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 10 | sincl | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐵 ) ∈ ℂ ) |
| 12 | 9 11 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 13 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 15 | coscl | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 17 | 14 16 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 18 | 12 17 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 19 | 5 7 18 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · i ) · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( 2 · ( i · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) ) ) |
| 20 | 7 12 17 | adddid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) + ( i · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) ) |
| 21 | 7 9 11 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) ) |
| 22 | 14 16 | mulcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) = ( ( cos ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) = ( i · ( ( cos ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) ) |
| 24 | 7 16 14 | mul12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( cos ‘ 𝐵 ) · ( sin ‘ 𝐴 ) ) ) = ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 25 | 23 24 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) = ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) |
| 26 | 21 25 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) + ( i · ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 27 | 20 26 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( i · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 29 | 19 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · i ) · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 30 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) | |
| 31 | 6 11 30 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 32 | 9 31 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 33 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( sin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) | |
| 34 | 6 14 33 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( sin ‘ 𝐴 ) ) ∈ ℂ ) |
| 35 | 16 34 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 36 | 32 35 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 37 | mulcl | ⊢ ( ( 2 ∈ ℂ ∧ ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) → ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) | |
| 38 | 4 36 37 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ∈ ℂ ) |
| 39 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 40 | 39 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · i ) ∈ ℂ ) |
| 41 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 42 | 41 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · i ) ≠ 0 ) |
| 43 | 38 40 18 42 | divmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / ( 2 · i ) ) = ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ↔ ( ( 2 · i ) · ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) ) |
| 44 | 29 43 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / ( 2 · i ) ) = ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 45 | 9 16 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 46 | 31 34 | mulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 47 | 45 46 | addcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 48 | 47 36 36 | pnncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) − ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 49 | adddi | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) | |
| 50 | 6 49 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · ( 𝐴 + 𝐵 ) ) = ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) ) |
| 52 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 53 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 54 | 6 52 53 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 55 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 56 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 57 | 6 55 56 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) |
| 58 | efadd | ⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) | |
| 59 | 54 57 58 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( i · 𝐴 ) + ( i · 𝐵 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) ) |
| 60 | efival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 61 | efival | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) | |
| 62 | 60 61 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 63 | 9 34 16 31 | muladdd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) + ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) + ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 64 | 62 63 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · 𝐴 ) ) · ( exp ‘ ( i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 65 | 51 59 64 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 66 | negicn | ⊢ - i ∈ ℂ | |
| 67 | adddi | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) | |
| 68 | 66 67 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · ( 𝐴 + 𝐵 ) ) = ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) |
| 69 | 68 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) ) |
| 70 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 71 | 66 52 70 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
| 72 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) | |
| 73 | 66 55 72 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) ∈ ℂ ) |
| 74 | efadd | ⊢ ( ( ( - i · 𝐴 ) ∈ ℂ ∧ ( - i · 𝐵 ) ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) | |
| 75 | 71 73 74 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ( - i · 𝐴 ) + ( - i · 𝐵 ) ) ) = ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) ) |
| 76 | efmival | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · 𝐴 ) ) = ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) ) | |
| 77 | efmival | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ ( - i · 𝐵 ) ) = ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) | |
| 78 | 76 77 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) ) |
| 79 | 9 34 16 31 | mulsubd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) − ( i · ( sin ‘ 𝐴 ) ) ) · ( ( cos ‘ 𝐵 ) − ( i · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 80 | 78 79 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( - i · 𝐴 ) ) · ( exp ‘ ( - i · 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 81 | 69 75 80 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 82 | 65 81 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) − ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( i · ( sin ‘ 𝐵 ) ) · ( i · ( sin ‘ 𝐴 ) ) ) ) − ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) ) |
| 83 | 36 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 84 | 48 82 83 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) = ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) ) |
| 85 | 84 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / ( 2 · i ) ) = ( ( 2 · ( ( ( cos ‘ 𝐴 ) · ( i · ( sin ‘ 𝐵 ) ) ) + ( ( cos ‘ 𝐵 ) · ( i · ( sin ‘ 𝐴 ) ) ) ) ) / ( 2 · i ) ) ) |
| 86 | 17 12 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 87 | 44 85 86 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( exp ‘ ( i · ( 𝐴 + 𝐵 ) ) ) − ( exp ‘ ( - i · ( 𝐴 + 𝐵 ) ) ) ) / ( 2 · i ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 88 | 3 87 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |