This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unimax | |- ( A e. B -> U. { x e. B | x C_ A } = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- A C_ A |
|
| 2 | sseq1 | |- ( x = A -> ( x C_ A <-> A C_ A ) ) |
|
| 3 | 2 | elrab3 | |- ( A e. B -> ( A e. { x e. B | x C_ A } <-> A C_ A ) ) |
| 4 | 1 3 | mpbiri | |- ( A e. B -> A e. { x e. B | x C_ A } ) |
| 5 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
| 6 | 5 | elrab | |- ( y e. { x e. B | x C_ A } <-> ( y e. B /\ y C_ A ) ) |
| 7 | 6 | simprbi | |- ( y e. { x e. B | x C_ A } -> y C_ A ) |
| 8 | 7 | rgen | |- A. y e. { x e. B | x C_ A } y C_ A |
| 9 | ssunieq | |- ( ( A e. { x e. B | x C_ A } /\ A. y e. { x e. B | x C_ A } y C_ A ) -> A = U. { x e. B | x C_ A } ) |
|
| 10 | 9 | eqcomd | |- ( ( A e. { x e. B | x C_ A } /\ A. y e. { x e. B | x C_ A } y C_ A ) -> U. { x e. B | x C_ A } = A ) |
| 11 | 4 8 10 | sylancl | |- ( A e. B -> U. { x e. B | x C_ A } = A ) |