This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: CH is atomistic, i.e. any element is the supremum of its atoms. Remark in Kalmbach p. 140. (Contributed by NM, 14-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hatomistic.1 | |- A e. CH |
|
| Assertion | hatomistici | |- A = ( \/H ` { x e. HAtoms | x C_ A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hatomistic.1 | |- A e. CH |
|
| 2 | ssrab2 | |- { x e. HAtoms | x C_ A } C_ HAtoms |
|
| 3 | atssch | |- HAtoms C_ CH |
|
| 4 | 2 3 | sstri | |- { x e. HAtoms | x C_ A } C_ CH |
| 5 | chsupcl | |- ( { x e. HAtoms | x C_ A } C_ CH -> ( \/H ` { x e. HAtoms | x C_ A } ) e. CH ) |
|
| 6 | 4 5 | ax-mp | |- ( \/H ` { x e. HAtoms | x C_ A } ) e. CH |
| 7 | 1 | chshii | |- A e. SH |
| 8 | atelch | |- ( y e. HAtoms -> y e. CH ) |
|
| 9 | 8 | anim1i | |- ( ( y e. HAtoms /\ y C_ A ) -> ( y e. CH /\ y C_ A ) ) |
| 10 | sseq1 | |- ( x = y -> ( x C_ A <-> y C_ A ) ) |
|
| 11 | 10 | elrab | |- ( y e. { x e. HAtoms | x C_ A } <-> ( y e. HAtoms /\ y C_ A ) ) |
| 12 | 10 | elrab | |- ( y e. { x e. CH | x C_ A } <-> ( y e. CH /\ y C_ A ) ) |
| 13 | 9 11 12 | 3imtr4i | |- ( y e. { x e. HAtoms | x C_ A } -> y e. { x e. CH | x C_ A } ) |
| 14 | 13 | ssriv | |- { x e. HAtoms | x C_ A } C_ { x e. CH | x C_ A } |
| 15 | ssrab2 | |- { x e. CH | x C_ A } C_ CH |
|
| 16 | chsupss | |- ( ( { x e. HAtoms | x C_ A } C_ CH /\ { x e. CH | x C_ A } C_ CH ) -> ( { x e. HAtoms | x C_ A } C_ { x e. CH | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ A } ) C_ ( \/H ` { x e. CH | x C_ A } ) ) ) |
|
| 17 | 4 15 16 | mp2an | |- ( { x e. HAtoms | x C_ A } C_ { x e. CH | x C_ A } -> ( \/H ` { x e. HAtoms | x C_ A } ) C_ ( \/H ` { x e. CH | x C_ A } ) ) |
| 18 | 14 17 | ax-mp | |- ( \/H ` { x e. HAtoms | x C_ A } ) C_ ( \/H ` { x e. CH | x C_ A } ) |
| 19 | chsupid | |- ( A e. CH -> ( \/H ` { x e. CH | x C_ A } ) = A ) |
|
| 20 | 1 19 | ax-mp | |- ( \/H ` { x e. CH | x C_ A } ) = A |
| 21 | 18 20 | sseqtri | |- ( \/H ` { x e. HAtoms | x C_ A } ) C_ A |
| 22 | elssuni | |- ( y e. { x e. HAtoms | x C_ A } -> y C_ U. { x e. HAtoms | x C_ A } ) |
|
| 23 | 11 22 | sylbir | |- ( ( y e. HAtoms /\ y C_ A ) -> y C_ U. { x e. HAtoms | x C_ A } ) |
| 24 | chsupunss | |- ( { x e. HAtoms | x C_ A } C_ CH -> U. { x e. HAtoms | x C_ A } C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) |
|
| 25 | 4 24 | ax-mp | |- U. { x e. HAtoms | x C_ A } C_ ( \/H ` { x e. HAtoms | x C_ A } ) |
| 26 | 23 25 | sstrdi | |- ( ( y e. HAtoms /\ y C_ A ) -> y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) |
| 27 | 26 | ex | |- ( y e. HAtoms -> ( y C_ A -> y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) ) |
| 28 | atne0 | |- ( y e. HAtoms -> y =/= 0H ) |
|
| 29 | 28 | adantr | |- ( ( y e. HAtoms /\ y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) -> y =/= 0H ) |
| 30 | ssin | |- ( ( y C_ ( \/H ` { x e. HAtoms | x C_ A } ) /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) <-> y C_ ( ( \/H ` { x e. HAtoms | x C_ A } ) i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
|
| 31 | 6 | chocini | |- ( ( \/H ` { x e. HAtoms | x C_ A } ) i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) = 0H |
| 32 | 31 | sseq2i | |- ( y C_ ( ( \/H ` { x e. HAtoms | x C_ A } ) i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) <-> y C_ 0H ) |
| 33 | 30 32 | bitr2i | |- ( y C_ 0H <-> ( y C_ ( \/H ` { x e. HAtoms | x C_ A } ) /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 34 | chle0 | |- ( y e. CH -> ( y C_ 0H <-> y = 0H ) ) |
|
| 35 | 8 34 | syl | |- ( y e. HAtoms -> ( y C_ 0H <-> y = 0H ) ) |
| 36 | 33 35 | bitr3id | |- ( y e. HAtoms -> ( ( y C_ ( \/H ` { x e. HAtoms | x C_ A } ) /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) <-> y = 0H ) ) |
| 37 | 36 | biimpa | |- ( ( y e. HAtoms /\ ( y C_ ( \/H ` { x e. HAtoms | x C_ A } ) /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) -> y = 0H ) |
| 38 | 37 | expr | |- ( ( y e. HAtoms /\ y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) -> ( y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) -> y = 0H ) ) |
| 39 | 38 | necon3ad | |- ( ( y e. HAtoms /\ y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) -> ( y =/= 0H -> -. y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 40 | 29 39 | mpd | |- ( ( y e. HAtoms /\ y C_ ( \/H ` { x e. HAtoms | x C_ A } ) ) -> -. y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) |
| 41 | 40 | ex | |- ( y e. HAtoms -> ( y C_ ( \/H ` { x e. HAtoms | x C_ A } ) -> -. y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 42 | 27 41 | syld | |- ( y e. HAtoms -> ( y C_ A -> -. y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 43 | imnan | |- ( ( y C_ A -> -. y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) <-> -. ( y C_ A /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
|
| 44 | 42 43 | sylib | |- ( y e. HAtoms -> -. ( y C_ A /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 45 | ssin | |- ( ( y C_ A /\ y C_ ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) <-> y C_ ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
|
| 46 | 44 45 | sylnib | |- ( y e. HAtoms -> -. y C_ ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 47 | 46 | nrex | |- -. E. y e. HAtoms y C_ ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) |
| 48 | 6 | choccli | |- ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) e. CH |
| 49 | 1 48 | chincli | |- ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) e. CH |
| 50 | 49 | hatomici | |- ( ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) =/= 0H -> E. y e. HAtoms y C_ ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) ) |
| 51 | 50 | necon1bi | |- ( -. E. y e. HAtoms y C_ ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) -> ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) = 0H ) |
| 52 | 47 51 | ax-mp | |- ( A i^i ( _|_ ` ( \/H ` { x e. HAtoms | x C_ A } ) ) ) = 0H |
| 53 | 6 7 21 52 | omlsii | |- ( \/H ` { x e. HAtoms | x C_ A } ) = A |
| 54 | 53 | eqcomi | |- A = ( \/H ` { x e. HAtoms | x C_ A } ) |