This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a subset of Hilbert space is a subspace. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spancl | |- ( A C_ ~H -> ( span ` A ) e. SH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spanval | |- ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } ) |
|
| 2 | ssrab2 | |- { x e. SH | A C_ x } C_ SH |
|
| 3 | helsh | |- ~H e. SH |
|
| 4 | sseq2 | |- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
|
| 5 | 4 | rspcev | |- ( ( ~H e. SH /\ A C_ ~H ) -> E. x e. SH A C_ x ) |
| 6 | 3 5 | mpan | |- ( A C_ ~H -> E. x e. SH A C_ x ) |
| 7 | rabn0 | |- ( { x e. SH | A C_ x } =/= (/) <-> E. x e. SH A C_ x ) |
|
| 8 | 6 7 | sylibr | |- ( A C_ ~H -> { x e. SH | A C_ x } =/= (/) ) |
| 9 | shintcl | |- ( ( { x e. SH | A C_ x } C_ SH /\ { x e. SH | A C_ x } =/= (/) ) -> |^| { x e. SH | A C_ x } e. SH ) |
|
| 10 | 2 8 9 | sylancr | |- ( A C_ ~H -> |^| { x e. SH | A C_ x } e. SH ) |
| 11 | 1 10 | eqeltrd | |- ( A C_ ~H -> ( span ` A ) e. SH ) |